Loading…
Molecular characterization of an endophytic Phomopsisliquidambaris CBR-15 from Cryptolepis buchanani Roem. and impact of culture media on biosynthesis of antimicrobial metabolites
An endophytic fungus Phomopsis liquidambaris CBR-15, was isolated from Cryptolepis buchanani Roem. (Asclepiadaceae) and identified by its characteristic culture morphology and molecular analysis of the ITS region of rDNA and intervening 5.8S rRNA gene. The impact of different culture media on biosyn...
Saved in:
Published in: | 3 Biotech 2015-04, Vol.5 (2), p.165-173 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An endophytic fungus
Phomopsis liquidambaris
CBR-15, was isolated from
Cryptolepis buchanani
Roem. (Asclepiadaceae) and identified by its characteristic culture morphology and molecular analysis of the ITS region of rDNA and intervening 5.8S rRNA gene. The impact of different culture media on biosynthesis of antimicrobial metabolites was tested by disc diffusion assay. Polyketide synthase gene (PKS) of the endophytic fungus was investigated using three pairs of degenerate primers LC1–LC2c, LC3–LC5c and KS3–KS4c by PCR. TLC-bioautography method was employed to detect the antimicrobial metabolites. Antimicrobial metabolites fractionated with ethyl acetate extract showed significant antimicrobial activity against the test bacteria and fungi. Biosynthesis of antimicrobial metabolites was optimum as depicted by zone of inhibition from ethyl acetate extract cultured in potato dextrose broth. Strain CBR-15 was identified as
Phomopsis
liquidambaris
and PKS genes of the fungus were amplified with LC3–LC5c and KS3–KS4c sets of degenerate primers. These findings suggest that endophytic
P.
liquidambaris
CBR-15 harbor iterative type I fungal PKS gene domain which indicates the biosynthetic potential of endophytic fungi as producers of natural antimicrobial metabolites. The study also demonstrates the utilization and optimization of different culture media which best supports for the biosynthesis of the antimicrobial metabolites from
P.
liquidambaris
. |
---|---|
ISSN: | 2190-572X 2190-5738 |
DOI: | 10.1007/s13205-014-0204-2 |