Loading…
Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and Function
Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16...
Saved in:
Published in: | Biophysical journal 2015-03, Vol.108 (5), p.1125-1132 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-e84d2df2edeec3fab26c31f7375c125042a462cdb68ddfe4f097f3bcf244b4963 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-e84d2df2edeec3fab26c31f7375c125042a462cdb68ddfe4f097f3bcf244b4963 |
container_end_page | 1132 |
container_issue | 5 |
container_start_page | 1125 |
container_title | Biophysical journal |
container_volume | 108 |
creator | Soubias, Olivier Teague, Walter E. Hines, Kirk G. Gawrisch, Klaus |
description | Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmembrane helices and hydrophobic thickness of lipid bilayers was observed from 2H nuclear magnetic resonance order parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane helices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well, which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation vanished for bilayers with a hydrophobic thickness of 27 ± 1 Å, suggesting that this is the bilayer thickness at which rhodopsin packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hydrophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization, and function. |
doi_str_mv | 10.1016/j.bpj.2015.01.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4375674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349515000673</els_id><sourcerecordid>1663658273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-e84d2df2edeec3fab26c31f7375c125042a462cdb68ddfe4f097f3bcf244b4963</originalsourceid><addsrcrecordid>eNqFkc1qFTEYhoMo9li9ADcy4MbNTPM3yQyCIMXawikF0XXI5OecDHOSMZkptKtehFfolZjhtAftoq5Ckud78-V7AHiLYIUgYid91Y19hSGqK4gqCNkzsEI1xSWEDXsOVjAflYS29RF4lVIPIcI1RC_BEa45wwTTFbj8tg06jMn5k7UbnS7Ob3QM4zZ0ThWXclJb5ze_734dsOJqcJuwM9HdyskFX0ivi7PZq2XzGrywckjmzf16DH6cffl-el6ur75enH5el6rmzVSahmqsLTbaGEWs7DBTBFlOeK2WFimWlGGlO9ZobQ21sOWWdMpiSjvaMnIMPu1zx7nbGa2Mn6IcxBjdTsYbEaQT_954txWbcC1ofoJxmgM-3AfE8HM2aRI7l5QZBulNmJNADao5hLwl_0cZI6xuMF_Q94_QPszR50ksFKUNbhHMFNpTKoaUorGHvhEUi1fRi-xVLF4FRCJLzDXv_v7woeJBZAY-7gGTx37tTBRJOeOV0S4aNQkd3BPxfwBLk7V3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664482910</pqid></control><display><type>article</type><title>Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and Function</title><source>Open Access: PubMed Central</source><creator>Soubias, Olivier ; Teague, Walter E. ; Hines, Kirk G. ; Gawrisch, Klaus</creator><creatorcontrib>Soubias, Olivier ; Teague, Walter E. ; Hines, Kirk G. ; Gawrisch, Klaus</creatorcontrib><description>Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmembrane helices and hydrophobic thickness of lipid bilayers was observed from 2H nuclear magnetic resonance order parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane helices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well, which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation vanished for bilayers with a hydrophobic thickness of 27 ± 1 Å, suggesting that this is the bilayer thickness at which rhodopsin packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hydrophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization, and function.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2015.01.006</identifier><identifier>PMID: 25762324</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics ; Cattle ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers - chemistry ; Lipids ; Liposomes - chemistry ; Membranes ; Protein Multimerization ; Proteins ; Rhodopsin - chemistry</subject><ispartof>Biophysical journal, 2015-03, Vol.108 (5), p.1125-1132</ispartof><rights>2015 Biophysical Society</rights><rights>Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Mar 10, 2015</rights><rights>2015 by the Biophysical Society. 2015 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-e84d2df2edeec3fab26c31f7375c125042a462cdb68ddfe4f097f3bcf244b4963</citedby><cites>FETCH-LOGICAL-c578t-e84d2df2edeec3fab26c31f7375c125042a462cdb68ddfe4f097f3bcf244b4963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375674/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375674/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25762324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soubias, Olivier</creatorcontrib><creatorcontrib>Teague, Walter E.</creatorcontrib><creatorcontrib>Hines, Kirk G.</creatorcontrib><creatorcontrib>Gawrisch, Klaus</creatorcontrib><title>Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and Function</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmembrane helices and hydrophobic thickness of lipid bilayers was observed from 2H nuclear magnetic resonance order parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane helices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well, which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation vanished for bilayers with a hydrophobic thickness of 27 ± 1 Å, suggesting that this is the bilayer thickness at which rhodopsin packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hydrophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization, and function.</description><subject>Animals</subject><subject>Biophysics</subject><subject>Cattle</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Liposomes - chemistry</subject><subject>Membranes</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Rhodopsin - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qFTEYhoMo9li9ADcy4MbNTPM3yQyCIMXawikF0XXI5OecDHOSMZkptKtehFfolZjhtAftoq5Ckud78-V7AHiLYIUgYid91Y19hSGqK4gqCNkzsEI1xSWEDXsOVjAflYS29RF4lVIPIcI1RC_BEa45wwTTFbj8tg06jMn5k7UbnS7Ob3QM4zZ0ThWXclJb5ze_734dsOJqcJuwM9HdyskFX0ivi7PZq2XzGrywckjmzf16DH6cffl-el6ur75enH5el6rmzVSahmqsLTbaGEWs7DBTBFlOeK2WFimWlGGlO9ZobQ21sOWWdMpiSjvaMnIMPu1zx7nbGa2Mn6IcxBjdTsYbEaQT_954txWbcC1ofoJxmgM-3AfE8HM2aRI7l5QZBulNmJNADao5hLwl_0cZI6xuMF_Q94_QPszR50ksFKUNbhHMFNpTKoaUorGHvhEUi1fRi-xVLF4FRCJLzDXv_v7woeJBZAY-7gGTx37tTBRJOeOV0S4aNQkd3BPxfwBLk7V3</recordid><startdate>20150310</startdate><enddate>20150310</enddate><creator>Soubias, Olivier</creator><creator>Teague, Walter E.</creator><creator>Hines, Kirk G.</creator><creator>Gawrisch, Klaus</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150310</creationdate><title>Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and Function</title><author>Soubias, Olivier ; Teague, Walter E. ; Hines, Kirk G. ; Gawrisch, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-e84d2df2edeec3fab26c31f7375c125042a462cdb68ddfe4f097f3bcf244b4963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>Cattle</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Liposomes - chemistry</topic><topic>Membranes</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Rhodopsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soubias, Olivier</creatorcontrib><creatorcontrib>Teague, Walter E.</creatorcontrib><creatorcontrib>Hines, Kirk G.</creatorcontrib><creatorcontrib>Gawrisch, Klaus</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soubias, Olivier</au><au>Teague, Walter E.</au><au>Hines, Kirk G.</au><au>Gawrisch, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and Function</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2015-03-10</date><risdate>2015</risdate><volume>108</volume><issue>5</issue><spage>1125</spage><epage>1132</epage><pages>1125-1132</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmembrane helices and hydrophobic thickness of lipid bilayers was observed from 2H nuclear magnetic resonance order parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane helices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well, which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation vanished for bilayers with a hydrophobic thickness of 27 ± 1 Å, suggesting that this is the bilayer thickness at which rhodopsin packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hydrophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization, and function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25762324</pmid><doi>10.1016/j.bpj.2015.01.006</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2015-03, Vol.108 (5), p.1125-1132 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4375674 |
source | Open Access: PubMed Central |
subjects | Animals Biophysics Cattle Hydrophobic and Hydrophilic Interactions Lipid Bilayers - chemistry Lipids Liposomes - chemistry Membranes Protein Multimerization Proteins Rhodopsin - chemistry |
title | Rhodopsin/Lipid Hydrophobic Matching—Rhodopsin Oligomerization and Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhodopsin/Lipid%20Hydrophobic%20Matching%E2%80%94Rhodopsin%20Oligomerization%20and%20Function&rft.jtitle=Biophysical%20journal&rft.au=Soubias,%20Olivier&rft.date=2015-03-10&rft.volume=108&rft.issue=5&rft.spage=1125&rft.epage=1132&rft.pages=1125-1132&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2015.01.006&rft_dat=%3Cproquest_pubme%3E1663658273%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-e84d2df2edeec3fab26c31f7375c125042a462cdb68ddfe4f097f3bcf244b4963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664482910&rft_id=info:pmid/25762324&rfr_iscdi=true |