Loading…
Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer
The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components....
Saved in:
Published in: | Scientific reports 2015-03, Vol.5 (1), p.9510-9510, Article 9510 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-f5d6dfad201050760960735ef27fc0c5072b326575d9ef6d37e95f46b86669093 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-f5d6dfad201050760960735ef27fc0c5072b326575d9ef6d37e95f46b86669093 |
container_end_page | 9510 |
container_issue | 1 |
container_start_page | 9510 |
container_title | Scientific reports |
container_volume | 5 |
creator | Chen, Guohao Zhao, Xinru Wang, Xiaozhi Jin, Hao Li, Shijian Dong, Shurong Flewitt, A. J. Milne, W. I. Luo, J. K. |
description | The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components. A new architecture is demonstrated which permits fabrication and integration of FBARs on arbitrary substrates. Wave confinement is achieved by fabricating the resonator on a polyimide support layer. Results show when the polymer thickness is greater than a critical value, d, the FBARs have similar performance to devices using alternative architectures. For ZnO FBARs operating at 1.3–2.2 GHz, d is ~9 μm and the devices have a
Q
-factor of 470, comparable to 493 for the membrane architecture devices. The polymer support makes the resonators insensitive to the underlying substrate. Yields over 95% have been achieved on roughened silicon, copper and glass. |
doi_str_mv | 10.1038/srep09510 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4379503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1668236770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-f5d6dfad201050760960735ef27fc0c5072b326575d9ef6d37e95f46b86669093</originalsourceid><addsrcrecordid>eNplkcFrHCEYxSUkNEu6h_4DQcglLWzzjY46Xgpl6baFhVySa8SZcTYmMzpRp7D_fV02WTatF-V7P55PH0KfCvhaAK1uYjAjSFbACZoRKNmCUEJOj87naB7jE-TFiCwL-QGdE1aRUgCfoYeV7QdcT_0z1o2fYrINDiZ6p5MPEVuXzCboZFrsHdahtinosMVxqmPazSOeonUbrPHo--1gQpbG0YeEe7014SM663Qfzfx1v0D3qx93y1-L9e3P38vv60VT0iotOtbyttMtgQIYCA6Sg6DMdER0DTR5RGpKOBOslabjLRVGsq7kdcU5lyDpBfq29x2nejBtY1xO16sx2CHHVV5b9V5x9lFt_B9VUiEZ0Gxw_WoQ_MtkYlKDjY3pe-1M_hZVcF4RyoWAjF79gz75Kbj8PFVUsuKUCsoz9XlPNcHH3FF3CFOA2hWnDsVl9vI4_YF8qykDX_ZAzJLbmHB05X9ufwFXr6M7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898633736</pqid></control><display><type>article</type><title>Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Guohao ; Zhao, Xinru ; Wang, Xiaozhi ; Jin, Hao ; Li, Shijian ; Dong, Shurong ; Flewitt, A. J. ; Milne, W. I. ; Luo, J. K.</creator><creatorcontrib>Chen, Guohao ; Zhao, Xinru ; Wang, Xiaozhi ; Jin, Hao ; Li, Shijian ; Dong, Shurong ; Flewitt, A. J. ; Milne, W. I. ; Luo, J. K.</creatorcontrib><description>The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components. A new architecture is demonstrated which permits fabrication and integration of FBARs on arbitrary substrates. Wave confinement is achieved by fabricating the resonator on a polyimide support layer. Results show when the polymer thickness is greater than a critical value, d, the FBARs have similar performance to devices using alternative architectures. For ZnO FBARs operating at 1.3–2.2 GHz, d is ~9 μm and the devices have a
Q
-factor of 470, comparable to 493 for the membrane architecture devices. The polymer support makes the resonators insensitive to the underlying substrate. Yields over 95% have been achieved on roughened silicon, copper and glass.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep09510</identifier><identifier>PMID: 25824706</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/1005 ; 639/925/927 ; Acoustics ; Fabrication ; Humanities and Social Sciences ; Integration ; Microelectromechanical systems ; multidisciplinary ; Polymers ; Science ; Silicon</subject><ispartof>Scientific reports, 2015-03, Vol.5 (1), p.9510-9510, Article 9510</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-f5d6dfad201050760960735ef27fc0c5072b326575d9ef6d37e95f46b86669093</citedby><cites>FETCH-LOGICAL-c438t-f5d6dfad201050760960735ef27fc0c5072b326575d9ef6d37e95f46b86669093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898633736/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898633736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25824706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guohao</creatorcontrib><creatorcontrib>Zhao, Xinru</creatorcontrib><creatorcontrib>Wang, Xiaozhi</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Dong, Shurong</creatorcontrib><creatorcontrib>Flewitt, A. J.</creatorcontrib><creatorcontrib>Milne, W. I.</creatorcontrib><creatorcontrib>Luo, J. K.</creatorcontrib><title>Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components. A new architecture is demonstrated which permits fabrication and integration of FBARs on arbitrary substrates. Wave confinement is achieved by fabricating the resonator on a polyimide support layer. Results show when the polymer thickness is greater than a critical value, d, the FBARs have similar performance to devices using alternative architectures. For ZnO FBARs operating at 1.3–2.2 GHz, d is ~9 μm and the devices have a
Q
-factor of 470, comparable to 493 for the membrane architecture devices. The polymer support makes the resonators insensitive to the underlying substrate. Yields over 95% have been achieved on roughened silicon, copper and glass.</description><subject>639/166/987</subject><subject>639/301/1005</subject><subject>639/925/927</subject><subject>Acoustics</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Integration</subject><subject>Microelectromechanical systems</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Science</subject><subject>Silicon</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkcFrHCEYxSUkNEu6h_4DQcglLWzzjY46Xgpl6baFhVySa8SZcTYmMzpRp7D_fV02WTatF-V7P55PH0KfCvhaAK1uYjAjSFbACZoRKNmCUEJOj87naB7jE-TFiCwL-QGdE1aRUgCfoYeV7QdcT_0z1o2fYrINDiZ6p5MPEVuXzCboZFrsHdahtinosMVxqmPazSOeonUbrPHo--1gQpbG0YeEe7014SM663Qfzfx1v0D3qx93y1-L9e3P38vv60VT0iotOtbyttMtgQIYCA6Sg6DMdER0DTR5RGpKOBOslabjLRVGsq7kdcU5lyDpBfq29x2nejBtY1xO16sx2CHHVV5b9V5x9lFt_B9VUiEZ0Gxw_WoQ_MtkYlKDjY3pe-1M_hZVcF4RyoWAjF79gz75Kbj8PFVUsuKUCsoz9XlPNcHH3FF3CFOA2hWnDsVl9vI4_YF8qykDX_ZAzJLbmHB05X9ufwFXr6M7</recordid><startdate>20150331</startdate><enddate>20150331</enddate><creator>Chen, Guohao</creator><creator>Zhao, Xinru</creator><creator>Wang, Xiaozhi</creator><creator>Jin, Hao</creator><creator>Li, Shijian</creator><creator>Dong, Shurong</creator><creator>Flewitt, A. J.</creator><creator>Milne, W. I.</creator><creator>Luo, J. K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150331</creationdate><title>Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer</title><author>Chen, Guohao ; Zhao, Xinru ; Wang, Xiaozhi ; Jin, Hao ; Li, Shijian ; Dong, Shurong ; Flewitt, A. J. ; Milne, W. I. ; Luo, J. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-f5d6dfad201050760960735ef27fc0c5072b326575d9ef6d37e95f46b86669093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/166/987</topic><topic>639/301/1005</topic><topic>639/925/927</topic><topic>Acoustics</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Integration</topic><topic>Microelectromechanical systems</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Science</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guohao</creatorcontrib><creatorcontrib>Zhao, Xinru</creatorcontrib><creatorcontrib>Wang, Xiaozhi</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Dong, Shurong</creatorcontrib><creatorcontrib>Flewitt, A. J.</creatorcontrib><creatorcontrib>Milne, W. I.</creatorcontrib><creatorcontrib>Luo, J. K.</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guohao</au><au>Zhao, Xinru</au><au>Wang, Xiaozhi</au><au>Jin, Hao</au><au>Li, Shijian</au><au>Dong, Shurong</au><au>Flewitt, A. J.</au><au>Milne, W. I.</au><au>Luo, J. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-03-31</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>9510</spage><epage>9510</epage><pages>9510-9510</pages><artnum>9510</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components. A new architecture is demonstrated which permits fabrication and integration of FBARs on arbitrary substrates. Wave confinement is achieved by fabricating the resonator on a polyimide support layer. Results show when the polymer thickness is greater than a critical value, d, the FBARs have similar performance to devices using alternative architectures. For ZnO FBARs operating at 1.3–2.2 GHz, d is ~9 μm and the devices have a
Q
-factor of 470, comparable to 493 for the membrane architecture devices. The polymer support makes the resonators insensitive to the underlying substrate. Yields over 95% have been achieved on roughened silicon, copper and glass.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25824706</pmid><doi>10.1038/srep09510</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-03, Vol.5 (1), p.9510-9510, Article 9510 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4379503 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/987 639/301/1005 639/925/927 Acoustics Fabrication Humanities and Social Sciences Integration Microelectromechanical systems multidisciplinary Polymers Science Silicon |
title | Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Film%20bulk%20acoustic%20resonators%20integrated%20on%20arbitrary%20substrates%20using%20a%20polymer%20support%20layer&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Guohao&rft.date=2015-03-31&rft.volume=5&rft.issue=1&rft.spage=9510&rft.epage=9510&rft.pages=9510-9510&rft.artnum=9510&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep09510&rft_dat=%3Cproquest_pubme%3E1668236770%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-f5d6dfad201050760960735ef27fc0c5072b326575d9ef6d37e95f46b86669093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898633736&rft_id=info:pmid/25824706&rfr_iscdi=true |