Loading…

A semi-supervised tensor regression model for siRNA efficacy prediction

Short interfering RNAs (siRNAs) can knockdown target genes and thus have an immense impact on biology and pharmacy research. The key question of which siRNAs have high knockdown ability in siRNA research remains challenging as current known results are still far from expectation. This work aims to d...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2015-03, Vol.16 (1), p.80-80, Article 80
Main Authors: Thang, Bui Ngoc, Ho, Tu Bao, Kanda, Tatsuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c614t-2a229173bde7d14cc59b0d6158cb6fd94e8c412019a675e4ec023ffd255c7b513
cites cdi_FETCH-LOGICAL-c614t-2a229173bde7d14cc59b0d6158cb6fd94e8c412019a675e4ec023ffd255c7b513
container_end_page 80
container_issue 1
container_start_page 80
container_title BMC bioinformatics
container_volume 16
creator Thang, Bui Ngoc
Ho, Tu Bao
Kanda, Tatsuo
description Short interfering RNAs (siRNAs) can knockdown target genes and thus have an immense impact on biology and pharmacy research. The key question of which siRNAs have high knockdown ability in siRNA research remains challenging as current known results are still far from expectation. This work aims to develop a generic framework to enhance siRNA knockdown efficacy prediction. The key idea is first to enrich siRNA sequences by incorporating them with rules found for designing effective siRNAs and representing them as enriched matrices, then to employ the bilinear tensor regression to predict knockdown efficacy of those matrices. Experiments show that the proposed method achieves better results than existing models in most cases. Our model not only provides a suitable siRNA representation but also can predict siRNA efficacy more accurate and stable than most of state-of-the-art models. Source codes are freely available on the web at: http://www.jaist.ac.jp/\~bao/BiLTR/ .
doi_str_mv 10.1186/s12859-015-0495-2
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4379720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541358016</galeid><sourcerecordid>A541358016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c614t-2a229173bde7d14cc59b0d6158cb6fd94e8c412019a675e4ec023ffd255c7b513</originalsourceid><addsrcrecordid>eNptkkFrHSEUhaU0NGnaH9BNGegmXUzqdXR0NoVHaJNASCBt1-Lo9dUyM77qTGj-fXy8NORBcKFcv3O4Xg8hH4CeAqj2SwamRFdTEDXlnajZK3IEXELNgIrXz86H5G3OfygFqah4Qw6ZUEoxCkfkfFVlHEOdlw2mu5DRVTNOOaYq4TphziFO1RgdDpUvxRxur1cVeh-ssffVJqELdi7MO3LgzZDx_eN-TH59__bz7KK-ujm_PFtd1bYFPtfMMNaBbHqH0gG3VnQ9dS0IZfvWu46jshxKZ51ppUCOlrLGe8eEsLIX0ByTrzvfzdKP6CxOczKD3qQwmnSvowl6_2YKv_U63mneyE4yWgxOHg1S_LtgnvUYssVhMBPGJWtoJW-V4lQU9NMOXZsBdZh8LI52i-uV4NAIRaEt1OkLVFmuzNXGCX0o9T3B5z1BYWb8N6_NkrO-_HG7z8KOtSnmnNA_vRSo3mZA7zKgSwb0NgOaFc3H5yN6Uvz_9OYBmLOrLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674688405</pqid></control><display><type>article</type><title>A semi-supervised tensor regression model for siRNA efficacy prediction</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Thang, Bui Ngoc ; Ho, Tu Bao ; Kanda, Tatsuo</creator><creatorcontrib>Thang, Bui Ngoc ; Ho, Tu Bao ; Kanda, Tatsuo</creatorcontrib><description>Short interfering RNAs (siRNAs) can knockdown target genes and thus have an immense impact on biology and pharmacy research. The key question of which siRNAs have high knockdown ability in siRNA research remains challenging as current known results are still far from expectation. This work aims to develop a generic framework to enhance siRNA knockdown efficacy prediction. The key idea is first to enrich siRNA sequences by incorporating them with rules found for designing effective siRNAs and representing them as enriched matrices, then to employ the bilinear tensor regression to predict knockdown efficacy of those matrices. Experiments show that the proposed method achieves better results than existing models in most cases. Our model not only provides a suitable siRNA representation but also can predict siRNA efficacy more accurate and stable than most of state-of-the-art models. Source codes are freely available on the web at: http://www.jaist.ac.jp/\~bao/BiLTR/ .</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-015-0495-2</identifier><identifier>PMID: 25888201</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Computer Simulation ; Drugstores ; Humans ; Methodology ; Physiological aspects ; Regression Analysis ; RNA Interference ; RNA, Small Interfering - genetics ; Sequence Analysis, RNA - methods ; Web sites</subject><ispartof>BMC bioinformatics, 2015-03, Vol.16 (1), p.80-80, Article 80</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Thang et al.; licensee BioMed Central. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c614t-2a229173bde7d14cc59b0d6158cb6fd94e8c412019a675e4ec023ffd255c7b513</citedby><cites>FETCH-LOGICAL-c614t-2a229173bde7d14cc59b0d6158cb6fd94e8c412019a675e4ec023ffd255c7b513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379720/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379720/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,36992,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25888201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thang, Bui Ngoc</creatorcontrib><creatorcontrib>Ho, Tu Bao</creatorcontrib><creatorcontrib>Kanda, Tatsuo</creatorcontrib><title>A semi-supervised tensor regression model for siRNA efficacy prediction</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Short interfering RNAs (siRNAs) can knockdown target genes and thus have an immense impact on biology and pharmacy research. The key question of which siRNAs have high knockdown ability in siRNA research remains challenging as current known results are still far from expectation. This work aims to develop a generic framework to enhance siRNA knockdown efficacy prediction. The key idea is first to enrich siRNA sequences by incorporating them with rules found for designing effective siRNAs and representing them as enriched matrices, then to employ the bilinear tensor regression to predict knockdown efficacy of those matrices. Experiments show that the proposed method achieves better results than existing models in most cases. Our model not only provides a suitable siRNA representation but also can predict siRNA efficacy more accurate and stable than most of state-of-the-art models. Source codes are freely available on the web at: http://www.jaist.ac.jp/\~bao/BiLTR/ .</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computer Simulation</subject><subject>Drugstores</subject><subject>Humans</subject><subject>Methodology</subject><subject>Physiological aspects</subject><subject>Regression Analysis</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Web sites</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkkFrHSEUhaU0NGnaH9BNGegmXUzqdXR0NoVHaJNASCBt1-Lo9dUyM77qTGj-fXy8NORBcKFcv3O4Xg8hH4CeAqj2SwamRFdTEDXlnajZK3IEXELNgIrXz86H5G3OfygFqah4Qw6ZUEoxCkfkfFVlHEOdlw2mu5DRVTNOOaYq4TphziFO1RgdDpUvxRxur1cVeh-ssffVJqELdi7MO3LgzZDx_eN-TH59__bz7KK-ujm_PFtd1bYFPtfMMNaBbHqH0gG3VnQ9dS0IZfvWu46jshxKZ51ppUCOlrLGe8eEsLIX0ByTrzvfzdKP6CxOczKD3qQwmnSvowl6_2YKv_U63mneyE4yWgxOHg1S_LtgnvUYssVhMBPGJWtoJW-V4lQU9NMOXZsBdZh8LI52i-uV4NAIRaEt1OkLVFmuzNXGCX0o9T3B5z1BYWb8N6_NkrO-_HG7z8KOtSnmnNA_vRSo3mZA7zKgSwb0NgOaFc3H5yN6Uvz_9OYBmLOrLQ</recordid><startdate>20150313</startdate><enddate>20150313</enddate><creator>Thang, Bui Ngoc</creator><creator>Ho, Tu Bao</creator><creator>Kanda, Tatsuo</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150313</creationdate><title>A semi-supervised tensor regression model for siRNA efficacy prediction</title><author>Thang, Bui Ngoc ; Ho, Tu Bao ; Kanda, Tatsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c614t-2a229173bde7d14cc59b0d6158cb6fd94e8c412019a675e4ec023ffd255c7b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computer Simulation</topic><topic>Drugstores</topic><topic>Humans</topic><topic>Methodology</topic><topic>Physiological aspects</topic><topic>Regression Analysis</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Web sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thang, Bui Ngoc</creatorcontrib><creatorcontrib>Ho, Tu Bao</creatorcontrib><creatorcontrib>Kanda, Tatsuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thang, Bui Ngoc</au><au>Ho, Tu Bao</au><au>Kanda, Tatsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-supervised tensor regression model for siRNA efficacy prediction</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2015-03-13</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>80</spage><epage>80</epage><pages>80-80</pages><artnum>80</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Short interfering RNAs (siRNAs) can knockdown target genes and thus have an immense impact on biology and pharmacy research. The key question of which siRNAs have high knockdown ability in siRNA research remains challenging as current known results are still far from expectation. This work aims to develop a generic framework to enhance siRNA knockdown efficacy prediction. The key idea is first to enrich siRNA sequences by incorporating them with rules found for designing effective siRNAs and representing them as enriched matrices, then to employ the bilinear tensor regression to predict knockdown efficacy of those matrices. Experiments show that the proposed method achieves better results than existing models in most cases. Our model not only provides a suitable siRNA representation but also can predict siRNA efficacy more accurate and stable than most of state-of-the-art models. Source codes are freely available on the web at: http://www.jaist.ac.jp/\~bao/BiLTR/ .</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25888201</pmid><doi>10.1186/s12859-015-0495-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2015-03, Vol.16 (1), p.80-80, Article 80
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4379720
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
Analysis
Computer Simulation
Drugstores
Humans
Methodology
Physiological aspects
Regression Analysis
RNA Interference
RNA, Small Interfering - genetics
Sequence Analysis, RNA - methods
Web sites
title A semi-supervised tensor regression model for siRNA efficacy prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-supervised%20tensor%20regression%20model%20for%20siRNA%20efficacy%20prediction&rft.jtitle=BMC%20bioinformatics&rft.au=Thang,%20Bui%20Ngoc&rft.date=2015-03-13&rft.volume=16&rft.issue=1&rft.spage=80&rft.epage=80&rft.pages=80-80&rft.artnum=80&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-015-0495-2&rft_dat=%3Cgale_pubme%3EA541358016%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c614t-2a229173bde7d14cc59b0d6158cb6fd94e8c412019a675e4ec023ffd255c7b513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1674688405&rft_id=info:pmid/25888201&rft_galeid=A541358016&rfr_iscdi=true