Loading…

Room-temperature enantioselective C–H iodination via kinetic resolution

Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2014-10, Vol.346 (6208), p.451-455
Main Authors: Chu, Ling, Xiao, Kai-Jiong, Yu, Jin-Quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83
cites cdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83
container_end_page 455
container_issue 6208
container_start_page 451
container_title Science (American Association for the Advancement of Science)
container_volume 346
creator Chu, Ling
Xiao, Kai-Jiong
Yu, Jin-Quan
description Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k fast/k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
doi_str_mv 10.1126/science.1258538
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917478</jstor_id><sourcerecordid>24917478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTju6dqUUzMZNzeQ_lY0gjc4MDAii65BK3dK0VUmbpBrczTv4hj6Jabpn_Nm4CuR8OTn3HoSeE3xOCJUX2XkIDs4JFZ1g3QO0IliLVlPMHqIVxky2HVbiBD3JeYNx1TR7jE6oYJwqrVfo-kOMc1tg3kKyZUnQQLCh-JhhAlf8Dpr1z9sfV42Pgw-2CqHZedt89QGKd02CHKdlf_0UPRrtlOHZ8TxFn969_bi-am_eX16v39y0TihdWqvHfuBjP46M7DNw4qTjmJCRc3BWDgNVo9CSC0qssgDMuh4k4wMFyvuOnaLXB9_t0s8wOAgl2clsk59t-m6i9eZvJfgv5nPcGc46Wv-pBq-OBil-WyAXM_vsYJpsgLhkQzTmVBCiu_-jkkjeYc5oRc_-QTdxSaFuYk8JxbUislIXB8qlmHOC8T43wWbfqDk2ao6N1hcv_xz3nr-rsAIvDsAml5h-61wTxVXHfgHTkKmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1615749716</pqid></control><display><type>article</type><title>Room-temperature enantioselective C–H iodination via kinetic resolution</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Chu, Ling ; Xiao, Kai-Jiong ; Yu, Jin-Quan</creator><creatorcontrib>Chu, Ling ; Xiao, Kai-Jiong ; Yu, Jin-Quan</creatorcontrib><description>Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k fast/k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1258538</identifier><identifier>PMID: 25342799</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Aromatic compounds ; Asymmetry ; Carbon ; Catalysis ; Catalysts ; Chemical bonds ; Enantiomers ; Enzyme kinetics ; Hydrogen bonds ; Iodination ; Kinetics ; Organic Chemistry ; Palladium ; Proteins ; Reaction kinetics ; Substrates</subject><ispartof>Science (American Association for the Advancement of Science), 2014-10, Vol.346 (6208), p.451-455</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science.</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</citedby><cites>FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917478$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917478$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,886,2885,2886,27926,27927,58240,58473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25342799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Ling</creatorcontrib><creatorcontrib>Xiao, Kai-Jiong</creatorcontrib><creatorcontrib>Yu, Jin-Quan</creatorcontrib><title>Room-temperature enantioselective C–H iodination via kinetic resolution</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k fast/k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.</description><subject>Aromatic compounds</subject><subject>Asymmetry</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Enantiomers</subject><subject>Enzyme kinetics</subject><subject>Hydrogen bonds</subject><subject>Iodination</subject><subject>Kinetics</subject><subject>Organic Chemistry</subject><subject>Palladium</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>Substrates</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc2KFDEUhYMoTju6dqUUzMZNzeQ_lY0gjc4MDAii65BK3dK0VUmbpBrczTv4hj6Jabpn_Nm4CuR8OTn3HoSeE3xOCJUX2XkIDs4JFZ1g3QO0IliLVlPMHqIVxky2HVbiBD3JeYNx1TR7jE6oYJwqrVfo-kOMc1tg3kKyZUnQQLCh-JhhAlf8Dpr1z9sfV42Pgw-2CqHZedt89QGKd02CHKdlf_0UPRrtlOHZ8TxFn969_bi-am_eX16v39y0TihdWqvHfuBjP46M7DNw4qTjmJCRc3BWDgNVo9CSC0qssgDMuh4k4wMFyvuOnaLXB9_t0s8wOAgl2clsk59t-m6i9eZvJfgv5nPcGc46Wv-pBq-OBil-WyAXM_vsYJpsgLhkQzTmVBCiu_-jkkjeYc5oRc_-QTdxSaFuYk8JxbUislIXB8qlmHOC8T43wWbfqDk2ao6N1hcv_xz3nr-rsAIvDsAml5h-61wTxVXHfgHTkKmw</recordid><startdate>20141024</startdate><enddate>20141024</enddate><creator>Chu, Ling</creator><creator>Xiao, Kai-Jiong</creator><creator>Yu, Jin-Quan</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141024</creationdate><title>Room-temperature enantioselective C–H iodination via kinetic resolution</title><author>Chu, Ling ; Xiao, Kai-Jiong ; Yu, Jin-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aromatic compounds</topic><topic>Asymmetry</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Enantiomers</topic><topic>Enzyme kinetics</topic><topic>Hydrogen bonds</topic><topic>Iodination</topic><topic>Kinetics</topic><topic>Organic Chemistry</topic><topic>Palladium</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Ling</creatorcontrib><creatorcontrib>Xiao, Kai-Jiong</creatorcontrib><creatorcontrib>Yu, Jin-Quan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Ling</au><au>Xiao, Kai-Jiong</au><au>Yu, Jin-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature enantioselective C–H iodination via kinetic resolution</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-10-24</date><risdate>2014</risdate><volume>346</volume><issue>6208</issue><spage>451</spage><epage>455</epage><pages>451-455</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k fast/k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>25342799</pmid><doi>10.1126/science.1258538</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-10, Vol.346 (6208), p.451-455
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382011
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Aromatic compounds
Asymmetry
Carbon
Catalysis
Catalysts
Chemical bonds
Enantiomers
Enzyme kinetics
Hydrogen bonds
Iodination
Kinetics
Organic Chemistry
Palladium
Proteins
Reaction kinetics
Substrates
title Room-temperature enantioselective C–H iodination via kinetic resolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20enantioselective%20C%E2%80%93H%20iodination%20via%20kinetic%20resolution&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chu,%20Ling&rft.date=2014-10-24&rft.volume=346&rft.issue=6208&rft.spage=451&rft.epage=455&rft.pages=451-455&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1258538&rft_dat=%3Cjstor_pubme%3E24917478%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1615749716&rft_id=info:pmid/25342799&rft_jstor_id=24917478&rfr_iscdi=true