Loading…
Room-temperature enantioselective C–H iodination via kinetic resolution
Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2014-10, Vol.346 (6208), p.451-455 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83 |
container_end_page | 455 |
container_issue | 6208 |
container_start_page | 451 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 346 |
creator | Chu, Ling Xiao, Kai-Jiong Yu, Jin-Quan |
description | Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k
fast/k
slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. |
doi_str_mv | 10.1126/science.1258538 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917478</jstor_id><sourcerecordid>24917478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTju6dqUUzMZNzeQ_lY0gjc4MDAii65BK3dK0VUmbpBrczTv4hj6Jabpn_Nm4CuR8OTn3HoSeE3xOCJUX2XkIDs4JFZ1g3QO0IliLVlPMHqIVxky2HVbiBD3JeYNx1TR7jE6oYJwqrVfo-kOMc1tg3kKyZUnQQLCh-JhhAlf8Dpr1z9sfV42Pgw-2CqHZedt89QGKd02CHKdlf_0UPRrtlOHZ8TxFn969_bi-am_eX16v39y0TihdWqvHfuBjP46M7DNw4qTjmJCRc3BWDgNVo9CSC0qssgDMuh4k4wMFyvuOnaLXB9_t0s8wOAgl2clsk59t-m6i9eZvJfgv5nPcGc46Wv-pBq-OBil-WyAXM_vsYJpsgLhkQzTmVBCiu_-jkkjeYc5oRc_-QTdxSaFuYk8JxbUislIXB8qlmHOC8T43wWbfqDk2ao6N1hcv_xz3nr-rsAIvDsAml5h-61wTxVXHfgHTkKmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1615749716</pqid></control><display><type>article</type><title>Room-temperature enantioselective C–H iodination via kinetic resolution</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Chu, Ling ; Xiao, Kai-Jiong ; Yu, Jin-Quan</creator><creatorcontrib>Chu, Ling ; Xiao, Kai-Jiong ; Yu, Jin-Quan</creatorcontrib><description>Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k
fast/k
slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1258538</identifier><identifier>PMID: 25342799</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Aromatic compounds ; Asymmetry ; Carbon ; Catalysis ; Catalysts ; Chemical bonds ; Enantiomers ; Enzyme kinetics ; Hydrogen bonds ; Iodination ; Kinetics ; Organic Chemistry ; Palladium ; Proteins ; Reaction kinetics ; Substrates</subject><ispartof>Science (American Association for the Advancement of Science), 2014-10, Vol.346 (6208), p.451-455</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science.</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</citedby><cites>FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917478$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917478$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,886,2885,2886,27926,27927,58240,58473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25342799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Ling</creatorcontrib><creatorcontrib>Xiao, Kai-Jiong</creatorcontrib><creatorcontrib>Yu, Jin-Quan</creatorcontrib><title>Room-temperature enantioselective C–H iodination via kinetic resolution</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k
fast/k
slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.</description><subject>Aromatic compounds</subject><subject>Asymmetry</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Enantiomers</subject><subject>Enzyme kinetics</subject><subject>Hydrogen bonds</subject><subject>Iodination</subject><subject>Kinetics</subject><subject>Organic Chemistry</subject><subject>Palladium</subject><subject>Proteins</subject><subject>Reaction kinetics</subject><subject>Substrates</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc2KFDEUhYMoTju6dqUUzMZNzeQ_lY0gjc4MDAii65BK3dK0VUmbpBrczTv4hj6Jabpn_Nm4CuR8OTn3HoSeE3xOCJUX2XkIDs4JFZ1g3QO0IliLVlPMHqIVxky2HVbiBD3JeYNx1TR7jE6oYJwqrVfo-kOMc1tg3kKyZUnQQLCh-JhhAlf8Dpr1z9sfV42Pgw-2CqHZedt89QGKd02CHKdlf_0UPRrtlOHZ8TxFn969_bi-am_eX16v39y0TihdWqvHfuBjP46M7DNw4qTjmJCRc3BWDgNVo9CSC0qssgDMuh4k4wMFyvuOnaLXB9_t0s8wOAgl2clsk59t-m6i9eZvJfgv5nPcGc46Wv-pBq-OBil-WyAXM_vsYJpsgLhkQzTmVBCiu_-jkkjeYc5oRc_-QTdxSaFuYk8JxbUislIXB8qlmHOC8T43wWbfqDk2ao6N1hcv_xz3nr-rsAIvDsAml5h-61wTxVXHfgHTkKmw</recordid><startdate>20141024</startdate><enddate>20141024</enddate><creator>Chu, Ling</creator><creator>Xiao, Kai-Jiong</creator><creator>Yu, Jin-Quan</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141024</creationdate><title>Room-temperature enantioselective C–H iodination via kinetic resolution</title><author>Chu, Ling ; Xiao, Kai-Jiong ; Yu, Jin-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aromatic compounds</topic><topic>Asymmetry</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Enantiomers</topic><topic>Enzyme kinetics</topic><topic>Hydrogen bonds</topic><topic>Iodination</topic><topic>Kinetics</topic><topic>Organic Chemistry</topic><topic>Palladium</topic><topic>Proteins</topic><topic>Reaction kinetics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Ling</creatorcontrib><creatorcontrib>Xiao, Kai-Jiong</creatorcontrib><creatorcontrib>Yu, Jin-Quan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Ling</au><au>Xiao, Kai-Jiong</au><au>Yu, Jin-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature enantioselective C–H iodination via kinetic resolution</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-10-24</date><risdate>2014</risdate><volume>346</volume><issue>6208</issue><spage>451</spage><epage>455</epage><pages>451-455</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k
fast/k
slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>25342799</pmid><doi>10.1126/science.1258538</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-10, Vol.346 (6208), p.451-455 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382011 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Aromatic compounds Asymmetry Carbon Catalysis Catalysts Chemical bonds Enantiomers Enzyme kinetics Hydrogen bonds Iodination Kinetics Organic Chemistry Palladium Proteins Reaction kinetics Substrates |
title | Room-temperature enantioselective C–H iodination via kinetic resolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20enantioselective%20C%E2%80%93H%20iodination%20via%20kinetic%20resolution&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chu,%20Ling&rft.date=2014-10-24&rft.volume=346&rft.issue=6208&rft.spage=451&rft.epage=455&rft.pages=451-455&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1258538&rft_dat=%3Cjstor_pubme%3E24917478%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-a9fbd4fbff31427941c6c4011f44eca6dd27f5964521a7aee3acbe634d2e24b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1615749716&rft_id=info:pmid/25342799&rft_jstor_id=24917478&rfr_iscdi=true |