Loading…
Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration
Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is in...
Saved in:
Published in: | The Journal of clinical investigation 2015-01, Vol.125 (1), p.105-116 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43 |
container_end_page | 116 |
container_issue | 1 |
container_start_page | 105 |
container_title | The Journal of clinical investigation |
container_volume | 125 |
creator | Byrne, Leah C Dalkara, Deniz Luna, Gabriel Fisher, Steven K Clérin, Emmanuelle Sahel, Jose-Alain Léveillard, Thierry Flannery, John G |
description | Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease. |
doi_str_mv | 10.1172/jci65654 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A401506561</galeid><sourcerecordid>A401506561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7FoFf4EMCKIXU5OZfM2NUBarKwuFqnsb0uTMbJbZyTTJSP33Zrdr7chelEBySJ7zkvOek2WvMTrDmJcfN9oyyih5ks0wpaIQZSWeZjOESlzUvBIn2YsQNghhQih5np2UlGBKKjLL2pX1qiu2YKyKYPIrM19d5Ko_RMscbgcPIVjX54N3EXQMuXY97BnvTD6sXXQeNAzpCLntcw_R9qrLDbTQg1cxJb_MnjWqC_DqcJ5mPy8-_5h_LZaXXxbz82WhOSljQSstDOccKpU20whUKsQoYN1woVFjOLuuyxRxxGrMWGOoakCZuua8wopUp9mnO91hvE5Faehjqk8O3m6V_y2dsnL60tu1bN0vSSpRlqxOAu8PAt7djBCi3NqgoetUD24MEiebGSc1o49BS0IF3aNv_0M3bvTJpB1FKkyZIOwf1aoOpO0bl76od6LynCBMkxMMJ6o4Qt1Z3aXONDZdT_izI3xaBrZWH034MElITITb2KoxBLn4fvV49nI1Zd89YNegurgOrht38xGm4MFY7V0IHpr7_mEkdwMvv80X-4FP6JuH_b4H_0549QeTJvZ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643156846</pqid></control><display><type>article</type><title>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</title><source>PubMed Central Free</source><source>EZB Free E-Journals</source><creator>Byrne, Leah C ; Dalkara, Deniz ; Luna, Gabriel ; Fisher, Steven K ; Clérin, Emmanuelle ; Sahel, Jose-Alain ; Léveillard, Thierry ; Flannery, John G</creator><creatorcontrib>Byrne, Leah C ; Dalkara, Deniz ; Luna, Gabriel ; Fisher, Steven K ; Clérin, Emmanuelle ; Sahel, Jose-Alain ; Léveillard, Thierry ; Flannery, John G</creatorcontrib><description>Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci65654</identifier><identifier>PMID: 25415434</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adeno-associated virus ; Animals ; Biomedical research ; Care and treatment ; Cell Survival ; Colleges & universities ; Dependovirus - genetics ; Evoked Potentials, Visual ; Eye Proteins - biosynthesis ; Eye Proteins - genetics ; Gene Expression ; Gene therapy ; Gene Transfer Techniques ; Genetic aspects ; Genetic Therapy ; Health aspects ; Hypotheses ; Laboratory animals ; Mice, Inbred C57BL ; Mutation ; Photic Stimulation ; Photoreceptors ; Physiological aspects ; Retina ; Retinal Cone Photoreceptor Cells ; Retinal degeneration ; Retinal Degeneration - metabolism ; Retinal Degeneration - pathology ; Retinal Degeneration - therapy ; Retinal Rod Photoreceptor Cells ; Rhodopsin - genetics ; Rhodopsin - metabolism ; Rodents ; Thioredoxins - biosynthesis ; Thioredoxins - genetics ; Transduction, Genetic</subject><ispartof>The Journal of clinical investigation, 2015-01, Vol.125 (1), p.105-116</ispartof><rights>COPYRIGHT 2015 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jan 2015</rights><rights>Copyright © 2015, American Society for Clinical Investigation 2015 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</citedby><cites>FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382269/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382269/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25415434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Byrne, Leah C</creatorcontrib><creatorcontrib>Dalkara, Deniz</creatorcontrib><creatorcontrib>Luna, Gabriel</creatorcontrib><creatorcontrib>Fisher, Steven K</creatorcontrib><creatorcontrib>Clérin, Emmanuelle</creatorcontrib><creatorcontrib>Sahel, Jose-Alain</creatorcontrib><creatorcontrib>Léveillard, Thierry</creatorcontrib><creatorcontrib>Flannery, John G</creatorcontrib><title>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Care and treatment</subject><subject>Cell Survival</subject><subject>Colleges & universities</subject><subject>Dependovirus - genetics</subject><subject>Evoked Potentials, Visual</subject><subject>Eye Proteins - biosynthesis</subject><subject>Eye Proteins - genetics</subject><subject>Gene Expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic aspects</subject><subject>Genetic Therapy</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>Laboratory animals</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Physiological aspects</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells</subject><subject>Retinal degeneration</subject><subject>Retinal Degeneration - metabolism</subject><subject>Retinal Degeneration - pathology</subject><subject>Retinal Degeneration - therapy</subject><subject>Retinal Rod Photoreceptor Cells</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>Rodents</subject><subject>Thioredoxins - biosynthesis</subject><subject>Thioredoxins - genetics</subject><subject>Transduction, Genetic</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFDEUhgdR7FoFf4EMCKIXU5OZfM2NUBarKwuFqnsb0uTMbJbZyTTJSP33Zrdr7chelEBySJ7zkvOek2WvMTrDmJcfN9oyyih5ks0wpaIQZSWeZjOESlzUvBIn2YsQNghhQih5np2UlGBKKjLL2pX1qiu2YKyKYPIrM19d5Ko_RMscbgcPIVjX54N3EXQMuXY97BnvTD6sXXQeNAzpCLntcw_R9qrLDbTQg1cxJb_MnjWqC_DqcJ5mPy8-_5h_LZaXXxbz82WhOSljQSstDOccKpU20whUKsQoYN1woVFjOLuuyxRxxGrMWGOoakCZuua8wopUp9mnO91hvE5Faehjqk8O3m6V_y2dsnL60tu1bN0vSSpRlqxOAu8PAt7djBCi3NqgoetUD24MEiebGSc1o49BS0IF3aNv_0M3bvTJpB1FKkyZIOwf1aoOpO0bl76od6LynCBMkxMMJ6o4Qt1Z3aXONDZdT_izI3xaBrZWH034MElITITb2KoxBLn4fvV49nI1Zd89YNegurgOrht38xGm4MFY7V0IHpr7_mEkdwMvv80X-4FP6JuH_b4H_0549QeTJvZ8</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Byrne, Leah C</creator><creator>Dalkara, Deniz</creator><creator>Luna, Gabriel</creator><creator>Fisher, Steven K</creator><creator>Clérin, Emmanuelle</creator><creator>Sahel, Jose-Alain</creator><creator>Léveillard, Thierry</creator><creator>Flannery, John G</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>7T5</scope><scope>7TK</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</title><author>Byrne, Leah C ; Dalkara, Deniz ; Luna, Gabriel ; Fisher, Steven K ; Clérin, Emmanuelle ; Sahel, Jose-Alain ; Léveillard, Thierry ; Flannery, John G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Care and treatment</topic><topic>Cell Survival</topic><topic>Colleges & universities</topic><topic>Dependovirus - genetics</topic><topic>Evoked Potentials, Visual</topic><topic>Eye Proteins - biosynthesis</topic><topic>Eye Proteins - genetics</topic><topic>Gene Expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic aspects</topic><topic>Genetic Therapy</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>Laboratory animals</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Physiological aspects</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells</topic><topic>Retinal degeneration</topic><topic>Retinal Degeneration - metabolism</topic><topic>Retinal Degeneration - pathology</topic><topic>Retinal Degeneration - therapy</topic><topic>Retinal Rod Photoreceptor Cells</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>Rodents</topic><topic>Thioredoxins - biosynthesis</topic><topic>Thioredoxins - genetics</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byrne, Leah C</creatorcontrib><creatorcontrib>Dalkara, Deniz</creatorcontrib><creatorcontrib>Luna, Gabriel</creatorcontrib><creatorcontrib>Fisher, Steven K</creatorcontrib><creatorcontrib>Clérin, Emmanuelle</creatorcontrib><creatorcontrib>Sahel, Jose-Alain</creatorcontrib><creatorcontrib>Léveillard, Thierry</creatorcontrib><creatorcontrib>Flannery, John G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byrne, Leah C</au><au>Dalkara, Deniz</au><au>Luna, Gabriel</au><au>Fisher, Steven K</au><au>Clérin, Emmanuelle</au><au>Sahel, Jose-Alain</au><au>Léveillard, Thierry</au><au>Flannery, John G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>125</volume><issue>1</issue><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>25415434</pmid><doi>10.1172/jci65654</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2015-01, Vol.125 (1), p.105-116 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382269 |
source | PubMed Central Free; EZB Free E-Journals |
subjects | Adeno-associated virus Animals Biomedical research Care and treatment Cell Survival Colleges & universities Dependovirus - genetics Evoked Potentials, Visual Eye Proteins - biosynthesis Eye Proteins - genetics Gene Expression Gene therapy Gene Transfer Techniques Genetic aspects Genetic Therapy Health aspects Hypotheses Laboratory animals Mice, Inbred C57BL Mutation Photic Stimulation Photoreceptors Physiological aspects Retina Retinal Cone Photoreceptor Cells Retinal degeneration Retinal Degeneration - metabolism Retinal Degeneration - pathology Retinal Degeneration - therapy Retinal Rod Photoreceptor Cells Rhodopsin - genetics Rhodopsin - metabolism Rodents Thioredoxins - biosynthesis Thioredoxins - genetics Transduction, Genetic |
title | Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viral-mediated%20RdCVF%20and%20RdCVFL%20expression%20protects%20cone%20and%20rod%20photoreceptors%20in%20retinal%20degeneration&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Byrne,%20Leah%20C&rft.date=2015-01-01&rft.volume=125&rft.issue=1&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci65654&rft_dat=%3Cgale_pubme%3EA401506561%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1643156846&rft_id=info:pmid/25415434&rft_galeid=A401506561&rfr_iscdi=true |