Loading…

Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration

Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is in...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 2015-01, Vol.125 (1), p.105-116
Main Authors: Byrne, Leah C, Dalkara, Deniz, Luna, Gabriel, Fisher, Steven K, Clérin, Emmanuelle, Sahel, Jose-Alain, Léveillard, Thierry, Flannery, John G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43
cites cdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43
container_end_page 116
container_issue 1
container_start_page 105
container_title The Journal of clinical investigation
container_volume 125
creator Byrne, Leah C
Dalkara, Deniz
Luna, Gabriel
Fisher, Steven K
Clérin, Emmanuelle
Sahel, Jose-Alain
Léveillard, Thierry
Flannery, John G
description Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.
doi_str_mv 10.1172/jci65654
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A401506561</galeid><sourcerecordid>A401506561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7FoFf4EMCKIXU5OZfM2NUBarKwuFqnsb0uTMbJbZyTTJSP33Zrdr7chelEBySJ7zkvOek2WvMTrDmJcfN9oyyih5ks0wpaIQZSWeZjOESlzUvBIn2YsQNghhQih5np2UlGBKKjLL2pX1qiu2YKyKYPIrM19d5Ko_RMscbgcPIVjX54N3EXQMuXY97BnvTD6sXXQeNAzpCLntcw_R9qrLDbTQg1cxJb_MnjWqC_DqcJ5mPy8-_5h_LZaXXxbz82WhOSljQSstDOccKpU20whUKsQoYN1woVFjOLuuyxRxxGrMWGOoakCZuua8wopUp9mnO91hvE5Faehjqk8O3m6V_y2dsnL60tu1bN0vSSpRlqxOAu8PAt7djBCi3NqgoetUD24MEiebGSc1o49BS0IF3aNv_0M3bvTJpB1FKkyZIOwf1aoOpO0bl76od6LynCBMkxMMJ6o4Qt1Z3aXONDZdT_izI3xaBrZWH034MElITITb2KoxBLn4fvV49nI1Zd89YNegurgOrht38xGm4MFY7V0IHpr7_mEkdwMvv80X-4FP6JuH_b4H_0549QeTJvZ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643156846</pqid></control><display><type>article</type><title>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</title><source>PubMed Central Free</source><source>EZB Free E-Journals</source><creator>Byrne, Leah C ; Dalkara, Deniz ; Luna, Gabriel ; Fisher, Steven K ; Clérin, Emmanuelle ; Sahel, Jose-Alain ; Léveillard, Thierry ; Flannery, John G</creator><creatorcontrib>Byrne, Leah C ; Dalkara, Deniz ; Luna, Gabriel ; Fisher, Steven K ; Clérin, Emmanuelle ; Sahel, Jose-Alain ; Léveillard, Thierry ; Flannery, John G</creatorcontrib><description>Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci65654</identifier><identifier>PMID: 25415434</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adeno-associated virus ; Animals ; Biomedical research ; Care and treatment ; Cell Survival ; Colleges &amp; universities ; Dependovirus - genetics ; Evoked Potentials, Visual ; Eye Proteins - biosynthesis ; Eye Proteins - genetics ; Gene Expression ; Gene therapy ; Gene Transfer Techniques ; Genetic aspects ; Genetic Therapy ; Health aspects ; Hypotheses ; Laboratory animals ; Mice, Inbred C57BL ; Mutation ; Photic Stimulation ; Photoreceptors ; Physiological aspects ; Retina ; Retinal Cone Photoreceptor Cells ; Retinal degeneration ; Retinal Degeneration - metabolism ; Retinal Degeneration - pathology ; Retinal Degeneration - therapy ; Retinal Rod Photoreceptor Cells ; Rhodopsin - genetics ; Rhodopsin - metabolism ; Rodents ; Thioredoxins - biosynthesis ; Thioredoxins - genetics ; Transduction, Genetic</subject><ispartof>The Journal of clinical investigation, 2015-01, Vol.125 (1), p.105-116</ispartof><rights>COPYRIGHT 2015 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jan 2015</rights><rights>Copyright © 2015, American Society for Clinical Investigation 2015 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</citedby><cites>FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382269/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382269/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25415434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Byrne, Leah C</creatorcontrib><creatorcontrib>Dalkara, Deniz</creatorcontrib><creatorcontrib>Luna, Gabriel</creatorcontrib><creatorcontrib>Fisher, Steven K</creatorcontrib><creatorcontrib>Clérin, Emmanuelle</creatorcontrib><creatorcontrib>Sahel, Jose-Alain</creatorcontrib><creatorcontrib>Léveillard, Thierry</creatorcontrib><creatorcontrib>Flannery, John G</creatorcontrib><title>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Care and treatment</subject><subject>Cell Survival</subject><subject>Colleges &amp; universities</subject><subject>Dependovirus - genetics</subject><subject>Evoked Potentials, Visual</subject><subject>Eye Proteins - biosynthesis</subject><subject>Eye Proteins - genetics</subject><subject>Gene Expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic aspects</subject><subject>Genetic Therapy</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>Laboratory animals</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Physiological aspects</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells</subject><subject>Retinal degeneration</subject><subject>Retinal Degeneration - metabolism</subject><subject>Retinal Degeneration - pathology</subject><subject>Retinal Degeneration - therapy</subject><subject>Retinal Rod Photoreceptor Cells</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>Rodents</subject><subject>Thioredoxins - biosynthesis</subject><subject>Thioredoxins - genetics</subject><subject>Transduction, Genetic</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFDEUhgdR7FoFf4EMCKIXU5OZfM2NUBarKwuFqnsb0uTMbJbZyTTJSP33Zrdr7chelEBySJ7zkvOek2WvMTrDmJcfN9oyyih5ks0wpaIQZSWeZjOESlzUvBIn2YsQNghhQih5np2UlGBKKjLL2pX1qiu2YKyKYPIrM19d5Ko_RMscbgcPIVjX54N3EXQMuXY97BnvTD6sXXQeNAzpCLntcw_R9qrLDbTQg1cxJb_MnjWqC_DqcJ5mPy8-_5h_LZaXXxbz82WhOSljQSstDOccKpU20whUKsQoYN1woVFjOLuuyxRxxGrMWGOoakCZuua8wopUp9mnO91hvE5Faehjqk8O3m6V_y2dsnL60tu1bN0vSSpRlqxOAu8PAt7djBCi3NqgoetUD24MEiebGSc1o49BS0IF3aNv_0M3bvTJpB1FKkyZIOwf1aoOpO0bl76od6LynCBMkxMMJ6o4Qt1Z3aXONDZdT_izI3xaBrZWH034MElITITb2KoxBLn4fvV49nI1Zd89YNegurgOrht38xGm4MFY7V0IHpr7_mEkdwMvv80X-4FP6JuH_b4H_0549QeTJvZ8</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Byrne, Leah C</creator><creator>Dalkara, Deniz</creator><creator>Luna, Gabriel</creator><creator>Fisher, Steven K</creator><creator>Clérin, Emmanuelle</creator><creator>Sahel, Jose-Alain</creator><creator>Léveillard, Thierry</creator><creator>Flannery, John G</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>7T5</scope><scope>7TK</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20150101</creationdate><title>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</title><author>Byrne, Leah C ; Dalkara, Deniz ; Luna, Gabriel ; Fisher, Steven K ; Clérin, Emmanuelle ; Sahel, Jose-Alain ; Léveillard, Thierry ; Flannery, John G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Care and treatment</topic><topic>Cell Survival</topic><topic>Colleges &amp; universities</topic><topic>Dependovirus - genetics</topic><topic>Evoked Potentials, Visual</topic><topic>Eye Proteins - biosynthesis</topic><topic>Eye Proteins - genetics</topic><topic>Gene Expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic aspects</topic><topic>Genetic Therapy</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>Laboratory animals</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Physiological aspects</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells</topic><topic>Retinal degeneration</topic><topic>Retinal Degeneration - metabolism</topic><topic>Retinal Degeneration - pathology</topic><topic>Retinal Degeneration - therapy</topic><topic>Retinal Rod Photoreceptor Cells</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>Rodents</topic><topic>Thioredoxins - biosynthesis</topic><topic>Thioredoxins - genetics</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byrne, Leah C</creatorcontrib><creatorcontrib>Dalkara, Deniz</creatorcontrib><creatorcontrib>Luna, Gabriel</creatorcontrib><creatorcontrib>Fisher, Steven K</creatorcontrib><creatorcontrib>Clérin, Emmanuelle</creatorcontrib><creatorcontrib>Sahel, Jose-Alain</creatorcontrib><creatorcontrib>Léveillard, Thierry</creatorcontrib><creatorcontrib>Flannery, John G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byrne, Leah C</au><au>Dalkara, Deniz</au><au>Luna, Gabriel</au><au>Fisher, Steven K</au><au>Clérin, Emmanuelle</au><au>Sahel, Jose-Alain</au><au>Léveillard, Thierry</au><au>Flannery, John G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>125</volume><issue>1</issue><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Alternative splicing of nucleoredoxin-like 1 (Nxnl1) results in 2 isoforms of the rod-derived cone viability factor. The truncated form (RdCVF) is a thioredoxin-like protein secreted by rods that promotes cone survival, while the full-length isoform (RdCVFL), which contains a thioredoxin fold, is involved in oxidative signaling and protection against hyperoxia. Here, we evaluated the effects of these different isoforms in 2 murine models of rod-cone dystrophy. We used adeno-associated virus (AAV) to express these isoforms in mice and found that both systemic and intravitreal injection of engineered AAV vectors resulted in RdCVF and RdCVFL expression in the eye. Systemic delivery of AAV92YF vectors in neonates resulted in earlier onset of RdCVF and RdCVFL expression compared with that observed with intraocular injection using the same vectors at P14. We also evaluated the efficacy of intravitreal injection using a recently developed photoreceptor-transducing AAV variant (7m8) at P14. Systemic administration of AAV92YF-RdCVF improved cone function and delayed cone loss, while AAV92YF-RdCVFL increased rhodopsin mRNA and reduced oxidative stress by-products. Intravitreal 7m8-RdCVF slowed the rate of cone cell death and increased the amplitude of the photopic electroretinogram. Together, these results indicate different functions for Nxnl1 isoforms in the retina and suggest that RdCVF gene therapy has potential for treating retinal degenerative disease.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>25415434</pmid><doi>10.1172/jci65654</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2015-01, Vol.125 (1), p.105-116
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382269
source PubMed Central Free; EZB Free E-Journals
subjects Adeno-associated virus
Animals
Biomedical research
Care and treatment
Cell Survival
Colleges & universities
Dependovirus - genetics
Evoked Potentials, Visual
Eye Proteins - biosynthesis
Eye Proteins - genetics
Gene Expression
Gene therapy
Gene Transfer Techniques
Genetic aspects
Genetic Therapy
Health aspects
Hypotheses
Laboratory animals
Mice, Inbred C57BL
Mutation
Photic Stimulation
Photoreceptors
Physiological aspects
Retina
Retinal Cone Photoreceptor Cells
Retinal degeneration
Retinal Degeneration - metabolism
Retinal Degeneration - pathology
Retinal Degeneration - therapy
Retinal Rod Photoreceptor Cells
Rhodopsin - genetics
Rhodopsin - metabolism
Rodents
Thioredoxins - biosynthesis
Thioredoxins - genetics
Transduction, Genetic
title Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viral-mediated%20RdCVF%20and%20RdCVFL%20expression%20protects%20cone%20and%20rod%20photoreceptors%20in%20retinal%20degeneration&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Byrne,%20Leah%20C&rft.date=2015-01-01&rft.volume=125&rft.issue=1&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci65654&rft_dat=%3Cgale_pubme%3EA401506561%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c742t-53c8d777e3a77edf802a065e1cf78c0fd76b928c07069166fd5afead997731a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1643156846&rft_id=info:pmid/25415434&rft_galeid=A401506561&rfr_iscdi=true