Loading…

Evaluation of conformational changes in diabetes-associated mutation in insulin a chain: A molecular dynamics study

ABSTRACT Insulin plays a central role in the regulation of metabolism in humans. Mutations in the insulin gene can impair the folding of its precursor protein, proinsulin, and cause permanent neonatal‐onset diabetes mellitus known as Mutant INS‐gene induced Diabetes of Youth (MIDY) with insulin defi...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2015-04, Vol.83 (4), p.662-669
Main Authors: Kim, Yong Hwan, Kastner, Kevin, Abdul-Wahid, Badi, Izaguirre, Jesús A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Insulin plays a central role in the regulation of metabolism in humans. Mutations in the insulin gene can impair the folding of its precursor protein, proinsulin, and cause permanent neonatal‐onset diabetes mellitus known as Mutant INS‐gene induced Diabetes of Youth (MIDY) with insulin deficiency. To gain insights into the molecular basis of this diabetes‐associated mutation, we perform molecular dynamics simulations in wild‐type and mutant (CysA7 to Tyr or C(A7)Y) insulin A chain in aqueous solutions. The C(A7)Y mutation is one of the identified mutations that impairs the protein folding by substituting the cysteine residue which is required for the disulfide bond formation. A comparative analysis reveals structural differences between the wild‐type and the mutant conformations. The analyzed mutant insulin A chain forms a metastable state with major effects on its N‐terminal region. This suggests that MIDY mutant involves formation of a partially folded intermediate with conformational change in N‐terminal region in A chain that generates flexible N‐terminal domain. This may lead to the abnormal interactions with other proinsulins in the aggregation process. Proteins 2015; 83:662–669. © 2015 Wiley Periodicals, Inc.
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.24759