Loading…

High-resolution vector microwave magnetometry based on solid-state spins in diamond

The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2015-03, Vol.6 (1), p.6631-6631, Article 6631
Main Authors: Wang, Pengfei, Yuan, Zhenheng, Huang, Pu, Rong, Xing, Wang, Mengqi, Xu, Xiangkun, Duan, Changkui, Ju, Chenyong, Shi, Fazhan, Du, Jiangfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-9062391d6b51203bcb7d5ad7cf4f46ab147c5b156de80f60e4609ee2e9f00373
cites cdi_FETCH-LOGICAL-c508t-9062391d6b51203bcb7d5ad7cf4f46ab147c5b156de80f60e4609ee2e9f00373
container_end_page 6631
container_issue 1
container_start_page 6631
container_title Nature communications
container_volume 6
creator Wang, Pengfei
Yuan, Zhenheng
Huang, Pu
Rong, Xing
Wang, Mengqi
Xu, Xiangkun
Duan, Changkui
Ju, Chenyong
Shi, Fazhan
Du, Jiangfeng
description The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate a scheme to measure both the strength and orientation of the microwave magnetic field by utilizing the quantum coherent dynamics of nitrogen vacancy centres in diamond. An angular resolution of 5.7 mrad and a sensitivity of 1.0 μT Hz −1/2 are achieved at a microwave frequency of 2.6000 GHz, and the microwave magnetic field vectors generated by a copper wire are precisely reconstructed. The solid-state microwave magnetometry with high resolution and wide frequency range that can work under ambient conditions proposed here enables unique potential applications over other state-of-art microwave magnetometry. Microwave technology is crucial for communications and high-speed electronics. Wang et al . now use nitrogen-vacancy defects in diamond to measure the strength and orientation of the magnetic component of a microwave electromagnetic field on the nanoscale.
doi_str_mv 10.1038/ncomms7631
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4383011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1666726637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9062391d6b51203bcb7d5ad7cf4f46ab147c5b156de80f60e4609ee2e9f00373</originalsourceid><addsrcrecordid>eNplkU1LxDAQhoMoKurFHyAFL6JUk6ZN24sg4hcIHvQe0mS6RppkTdKV_fdmXT9WnUsG5uGdd_IitE_wKcG0ObPSGRNqRska2i5wSXJSF3R9pd9CeyG84FS0JU1ZbqKtoqrbllTVNnq81ZPn3ENwwxi1s9kMZHQ-M1p69yZmkBkxsRCdgejnWScCqCxhidcqD1FEyMJU25BpmyktjLNqF230Ygiw9_nuoKfrq6fL2_z-4ebu8uI-lxVuYt5iViRHinUVKTDtZFerSqha9mVfMtGRspZVRyqmoME9w1Ay3AIU0PbplJruoPOl7HTsDCgJNnox8KnXRvg5d0Lz3xOrn_nEzXhJG4oJSQJHnwLevY4QIjc6SBgGYcGNgRPGWF0w9rHr8A_64kZv03ULKvlnlC0Ej5dU-rsQPPTfZgjmi7T4T1oJPli1_41-ZZOAkyUQ0shOwK_s_C_3DoMmoPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1665126361</pqid></control><display><type>article</type><title>High-resolution vector microwave magnetometry based on solid-state spins in diamond</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Wang, Pengfei ; Yuan, Zhenheng ; Huang, Pu ; Rong, Xing ; Wang, Mengqi ; Xu, Xiangkun ; Duan, Changkui ; Ju, Chenyong ; Shi, Fazhan ; Du, Jiangfeng</creator><creatorcontrib>Wang, Pengfei ; Yuan, Zhenheng ; Huang, Pu ; Rong, Xing ; Wang, Mengqi ; Xu, Xiangkun ; Duan, Changkui ; Ju, Chenyong ; Shi, Fazhan ; Du, Jiangfeng</creatorcontrib><description>The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate a scheme to measure both the strength and orientation of the microwave magnetic field by utilizing the quantum coherent dynamics of nitrogen vacancy centres in diamond. An angular resolution of 5.7 mrad and a sensitivity of 1.0 μT Hz −1/2 are achieved at a microwave frequency of 2.6000 GHz, and the microwave magnetic field vectors generated by a copper wire are precisely reconstructed. The solid-state microwave magnetometry with high resolution and wide frequency range that can work under ambient conditions proposed here enables unique potential applications over other state-of-art microwave magnetometry. Microwave technology is crucial for communications and high-speed electronics. Wang et al . now use nitrogen-vacancy defects in diamond to measure the strength and orientation of the magnetic component of a microwave electromagnetic field on the nanoscale.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7631</identifier><identifier>PMID: 25799155</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1001 ; 639/766/25 ; 639/925 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-03, Vol.6 (1), p.6631-6631, Article 6631</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9062391d6b51203bcb7d5ad7cf4f46ab147c5b156de80f60e4609ee2e9f00373</citedby><cites>FETCH-LOGICAL-c508t-9062391d6b51203bcb7d5ad7cf4f46ab147c5b156de80f60e4609ee2e9f00373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1665126361/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1665126361?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25799155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Yuan, Zhenheng</creatorcontrib><creatorcontrib>Huang, Pu</creatorcontrib><creatorcontrib>Rong, Xing</creatorcontrib><creatorcontrib>Wang, Mengqi</creatorcontrib><creatorcontrib>Xu, Xiangkun</creatorcontrib><creatorcontrib>Duan, Changkui</creatorcontrib><creatorcontrib>Ju, Chenyong</creatorcontrib><creatorcontrib>Shi, Fazhan</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><title>High-resolution vector microwave magnetometry based on solid-state spins in diamond</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate a scheme to measure both the strength and orientation of the microwave magnetic field by utilizing the quantum coherent dynamics of nitrogen vacancy centres in diamond. An angular resolution of 5.7 mrad and a sensitivity of 1.0 μT Hz −1/2 are achieved at a microwave frequency of 2.6000 GHz, and the microwave magnetic field vectors generated by a copper wire are precisely reconstructed. The solid-state microwave magnetometry with high resolution and wide frequency range that can work under ambient conditions proposed here enables unique potential applications over other state-of-art microwave magnetometry. Microwave technology is crucial for communications and high-speed electronics. Wang et al . now use nitrogen-vacancy defects in diamond to measure the strength and orientation of the magnetic component of a microwave electromagnetic field on the nanoscale.</description><subject>639/301/119/1001</subject><subject>639/766/25</subject><subject>639/925</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkU1LxDAQhoMoKurFHyAFL6JUk6ZN24sg4hcIHvQe0mS6RppkTdKV_fdmXT9WnUsG5uGdd_IitE_wKcG0ObPSGRNqRska2i5wSXJSF3R9pd9CeyG84FS0JU1ZbqKtoqrbllTVNnq81ZPn3ENwwxi1s9kMZHQ-M1p69yZmkBkxsRCdgejnWScCqCxhidcqD1FEyMJU25BpmyktjLNqF230Ygiw9_nuoKfrq6fL2_z-4ebu8uI-lxVuYt5iViRHinUVKTDtZFerSqha9mVfMtGRspZVRyqmoME9w1Ay3AIU0PbplJruoPOl7HTsDCgJNnox8KnXRvg5d0Lz3xOrn_nEzXhJG4oJSQJHnwLevY4QIjc6SBgGYcGNgRPGWF0w9rHr8A_64kZv03ULKvlnlC0Ej5dU-rsQPPTfZgjmi7T4T1oJPli1_41-ZZOAkyUQ0shOwK_s_C_3DoMmoPU</recordid><startdate>20150323</startdate><enddate>20150323</enddate><creator>Wang, Pengfei</creator><creator>Yuan, Zhenheng</creator><creator>Huang, Pu</creator><creator>Rong, Xing</creator><creator>Wang, Mengqi</creator><creator>Xu, Xiangkun</creator><creator>Duan, Changkui</creator><creator>Ju, Chenyong</creator><creator>Shi, Fazhan</creator><creator>Du, Jiangfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150323</creationdate><title>High-resolution vector microwave magnetometry based on solid-state spins in diamond</title><author>Wang, Pengfei ; Yuan, Zhenheng ; Huang, Pu ; Rong, Xing ; Wang, Mengqi ; Xu, Xiangkun ; Duan, Changkui ; Ju, Chenyong ; Shi, Fazhan ; Du, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9062391d6b51203bcb7d5ad7cf4f46ab147c5b156de80f60e4609ee2e9f00373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/119/1001</topic><topic>639/766/25</topic><topic>639/925</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Yuan, Zhenheng</creatorcontrib><creatorcontrib>Huang, Pu</creatorcontrib><creatorcontrib>Rong, Xing</creatorcontrib><creatorcontrib>Wang, Mengqi</creatorcontrib><creatorcontrib>Xu, Xiangkun</creatorcontrib><creatorcontrib>Duan, Changkui</creatorcontrib><creatorcontrib>Ju, Chenyong</creatorcontrib><creatorcontrib>Shi, Fazhan</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pengfei</au><au>Yuan, Zhenheng</au><au>Huang, Pu</au><au>Rong, Xing</au><au>Wang, Mengqi</au><au>Xu, Xiangkun</au><au>Duan, Changkui</au><au>Ju, Chenyong</au><au>Shi, Fazhan</au><au>Du, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution vector microwave magnetometry based on solid-state spins in diamond</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-03-23</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6631</spage><epage>6631</epage><pages>6631-6631</pages><artnum>6631</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate a scheme to measure both the strength and orientation of the microwave magnetic field by utilizing the quantum coherent dynamics of nitrogen vacancy centres in diamond. An angular resolution of 5.7 mrad and a sensitivity of 1.0 μT Hz −1/2 are achieved at a microwave frequency of 2.6000 GHz, and the microwave magnetic field vectors generated by a copper wire are precisely reconstructed. The solid-state microwave magnetometry with high resolution and wide frequency range that can work under ambient conditions proposed here enables unique potential applications over other state-of-art microwave magnetometry. Microwave technology is crucial for communications and high-speed electronics. Wang et al . now use nitrogen-vacancy defects in diamond to measure the strength and orientation of the magnetic component of a microwave electromagnetic field on the nanoscale.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25799155</pmid><doi>10.1038/ncomms7631</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-03, Vol.6 (1), p.6631-6631, Article 6631
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4383011
source Open Access: PubMed Central; Nature; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database
subjects 639/301/119/1001
639/766/25
639/925
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title High-resolution vector microwave magnetometry based on solid-state spins in diamond
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20vector%20microwave%20magnetometry%20based%20on%20solid-state%20spins%20in%20diamond&rft.jtitle=Nature%20communications&rft.au=Wang,%20Pengfei&rft.date=2015-03-23&rft.volume=6&rft.issue=1&rft.spage=6631&rft.epage=6631&rft.pages=6631-6631&rft.artnum=6631&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7631&rft_dat=%3Cproquest_pubme%3E1666726637%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-9062391d6b51203bcb7d5ad7cf4f46ab147c5b156de80f60e4609ee2e9f00373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1665126361&rft_id=info:pmid/25799155&rfr_iscdi=true