Loading…

Spray cooling characteristics of nanofluids for electronic power devices

The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale research letters 2015-03, Vol.10 (1), p.139-139, Article 139
Main Authors: Hsieh, Shou-Shing, Leu, Hsin-Yuan, Liu, Hao-Hsiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b531t-c532bea3d69932d1ba441f182650da0c172ee65af13eebc14a1e91a5e2e438bf3
cites cdi_FETCH-LOGICAL-b531t-c532bea3d69932d1ba441f182650da0c172ee65af13eebc14a1e91a5e2e438bf3
container_end_page 139
container_issue 1
container_start_page 139
container_title Nanoscale research letters
container_volume 10
creator Hsieh, Shou-Shing
Leu, Hsin-Yuan
Liu, Hao-Hsiang
description The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm 2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10 −4  kg/cm 2 s.
doi_str_mv 10.1186/s11671-015-0793-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4385298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3967627191</sourcerecordid><originalsourceid>FETCH-LOGICAL-b531t-c532bea3d69932d1ba441f182650da0c172ee65af13eebc14a1e91a5e2e438bf3</originalsourceid><addsrcrecordid>eNp1kUFLHTEUhYO0VGv7A9yUgW7cjM1NJslkI4i2VRC6qEJ3IZO584zMS16TGcV_3zzGipa6yoVz7pfDuYQcAD0CaOWXDCAV1BRETZXmtdoheyCErJmSv96UWXOolVB8l7zP-ZbSRlEl35FdJlrBGqb3yPnPTbIPlYtx9GFVuRubrJsw-Tx5l6s4VMGGOIyz73M1xFThiG5KMXhXbeI9pqrHO-8wfyBvBztm_Pj47pPrb1-vTs_ryx_fL05PLutOcJhqJzjr0PJeas1ZD51tGhigZVLQ3lIHiiFKYQfgiJ2DxgJqsAIZNrztBr5PjhfuZu7W2DsMU7Kj2SS_tunBROvNSyX4G7OKd6asC6bbAjhbAJ2PrwBeKi6uzdK0KU2bbdNGFczhY44Uf8-YJ7P22eE42oBxzqb4GdUMKC3Wz_9Yb-OcQmnJgJKaljPpLRAWl0sx54TDUySgZnvu_4b49LyMp42_9y0GthhykcIK07OvX6X-ASpDt70</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1769019397</pqid></control><display><type>article</type><title>Spray cooling characteristics of nanofluids for electronic power devices</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Hsieh, Shou-Shing ; Leu, Hsin-Yuan ; Liu, Hao-Hsiang</creator><creatorcontrib>Hsieh, Shou-Shing ; Leu, Hsin-Yuan ; Liu, Hao-Hsiang</creatorcontrib><description>The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm 2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10 −4  kg/cm 2 s.</description><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 1556-276X</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-015-0793-7</identifier><identifier>PMID: 25852429</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Chemistry and Materials Science ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering</subject><ispartof>Nanoscale research letters, 2015-03, Vol.10 (1), p.139-139, Article 139</ispartof><rights>Hsieh et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>The Author(s) 2015</rights><rights>Hsieh et al.; licensee Springer. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b531t-c532bea3d69932d1ba441f182650da0c172ee65af13eebc14a1e91a5e2e438bf3</citedby><cites>FETCH-LOGICAL-b531t-c532bea3d69932d1ba441f182650da0c172ee65af13eebc14a1e91a5e2e438bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1769019397/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1769019397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,36989,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25852429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Shou-Shing</creatorcontrib><creatorcontrib>Leu, Hsin-Yuan</creatorcontrib><creatorcontrib>Liu, Hao-Hsiang</creatorcontrib><title>Spray cooling characteristics of nanofluids for electronic power devices</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm 2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10 −4  kg/cm 2 s.</description><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><issn>1931-7573</issn><issn>1556-276X</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kUFLHTEUhYO0VGv7A9yUgW7cjM1NJslkI4i2VRC6qEJ3IZO584zMS16TGcV_3zzGipa6yoVz7pfDuYQcAD0CaOWXDCAV1BRETZXmtdoheyCErJmSv96UWXOolVB8l7zP-ZbSRlEl35FdJlrBGqb3yPnPTbIPlYtx9GFVuRubrJsw-Tx5l6s4VMGGOIyz73M1xFThiG5KMXhXbeI9pqrHO-8wfyBvBztm_Pj47pPrb1-vTs_ryx_fL05PLutOcJhqJzjr0PJeas1ZD51tGhigZVLQ3lIHiiFKYQfgiJ2DxgJqsAIZNrztBr5PjhfuZu7W2DsMU7Kj2SS_tunBROvNSyX4G7OKd6asC6bbAjhbAJ2PrwBeKi6uzdK0KU2bbdNGFczhY44Uf8-YJ7P22eE42oBxzqb4GdUMKC3Wz_9Yb-OcQmnJgJKaljPpLRAWl0sx54TDUySgZnvu_4b49LyMp42_9y0GthhykcIK07OvX6X-ASpDt70</recordid><startdate>20150319</startdate><enddate>20150319</enddate><creator>Hsieh, Shou-Shing</creator><creator>Leu, Hsin-Yuan</creator><creator>Liu, Hao-Hsiang</creator><general>Springer US</general><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150319</creationdate><title>Spray cooling characteristics of nanofluids for electronic power devices</title><author>Hsieh, Shou-Shing ; Leu, Hsin-Yuan ; Liu, Hao-Hsiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b531t-c532bea3d69932d1ba441f182650da0c172ee65af13eebc14a1e91a5e2e438bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Shou-Shing</creatorcontrib><creatorcontrib>Leu, Hsin-Yuan</creatorcontrib><creatorcontrib>Liu, Hao-Hsiang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Shou-Shing</au><au>Leu, Hsin-Yuan</au><au>Liu, Hao-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spray cooling characteristics of nanofluids for electronic power devices</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2015-03-19</date><risdate>2015</risdate><volume>10</volume><issue>1</issue><spage>139</spage><epage>139</epage><pages>139-139</pages><artnum>139</artnum><issn>1931-7573</issn><issn>1556-276X</issn><eissn>1556-276X</eissn><abstract>The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm 2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10 −4  kg/cm 2 s.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>25852429</pmid><doi>10.1186/s11671-015-0793-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2015-03, Vol.10 (1), p.139-139, Article 139
issn 1931-7573
1556-276X
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4385298
source Publicly Available Content Database; IngentaConnect Journals; PubMed Central
subjects Chemistry and Materials Science
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
title Spray cooling characteristics of nanofluids for electronic power devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T09%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spray%20cooling%20characteristics%20of%20nanofluids%20for%20electronic%20power%20devices&rft.jtitle=Nanoscale%20research%20letters&rft.au=Hsieh,%20Shou-Shing&rft.date=2015-03-19&rft.volume=10&rft.issue=1&rft.spage=139&rft.epage=139&rft.pages=139-139&rft.artnum=139&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-015-0793-7&rft_dat=%3Cproquest_pubme%3E3967627191%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b531t-c532bea3d69932d1ba441f182650da0c172ee65af13eebc14a1e91a5e2e438bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1769019397&rft_id=info:pmid/25852429&rfr_iscdi=true