Loading…
Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011
Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiot...
Saved in:
Published in: | Malaria journal 2015-04, Vol.14 (1), p.145-145, Article 145 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63 |
container_end_page | 145 |
container_issue | 1 |
container_start_page | 145 |
container_title | Malaria journal |
container_volume | 14 |
creator | Xia, Jing Cai, Shunxiang Zhang, Huaxun Lin, Wen Fan, Yunzhou Qiu, Juan Sun, Liqian Chang, Bianrong Zhang, Zhijie Nie, Shaofa |
description | Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province.
Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model.
The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007.
The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination. |
doi_str_mv | 10.1186/s12936-015-0650-2 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541473850</galeid><sourcerecordid>A541473850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</originalsourceid><addsrcrecordid>eNptUU1LHTEUDdJSv_oD3JRAN104NjeTycdGkEf9AKGF1nXIZBJNmUmeyTzBf2-Gp6IgWeRy7jmHe-9B6AjICYDkPwtQ1fKGQNcQ3pGG7qA9YKJrqBTdpzf1Ltov5T8hIKSgX9Au7aRQjIk9ZP6uzRzMeIxnN61TXioTB1wWOL1gFTLjYwkFJ48nM5ocDA4RX256F_CfnB5CtO4Yr-5CNNjnNGFKCGsoAThEn70Zi_v6_B-gm_Nf_1aXzfXvi6vV2XVjGedz0zPPvDPQS6-4coPsOaXKWyENBeos9YZJ6L1VXa9ASeltLyxzjAzeM8vbA3S69V1v-skN1sW5Tq7XOUwmP-pkgn7fieFO36YHzVrVyk5Wgx_PBjndb1yZ9RSKdeNookubooELRqHlLavU71vqrRmdDtGn6mgXuj7rWD17NSSVdfIBq77BTcGm6Hyo-DsBbAU2p1Ky86_TA9FL4nqbuK6J6yVxTavm29u1XxUvEbdPKhGmEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674213634</pqid></control><display><type>article</type><title>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Xia, Jing ; Cai, Shunxiang ; Zhang, Huaxun ; Lin, Wen ; Fan, Yunzhou ; Qiu, Juan ; Sun, Liqian ; Chang, Bianrong ; Zhang, Zhijie ; Nie, Shaofa</creator><creatorcontrib>Xia, Jing ; Cai, Shunxiang ; Zhang, Huaxun ; Lin, Wen ; Fan, Yunzhou ; Qiu, Juan ; Sun, Liqian ; Chang, Bianrong ; Zhang, Zhijie ; Nie, Shaofa</creatorcontrib><description>Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province.
Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model.
The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007.
The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.</description><identifier>ISSN: 1475-2875</identifier><identifier>EISSN: 1475-2875</identifier><identifier>DOI: 10.1186/s12936-015-0650-2</identifier><identifier>PMID: 25879447</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; China - epidemiology ; Control ; Geographic information systems ; Geography, Medical ; Humans ; Incidence ; Malaria ; Malaria - epidemiology ; Retrospective Studies ; Risk factors ; Spatio-Temporal Analysis</subject><ispartof>Malaria journal, 2015-04, Vol.14 (1), p.145-145, Article 145</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Xia et al.; licensee BioMed Central. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</citedby><cites>FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,36994,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25879447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>Cai, Shunxiang</creatorcontrib><creatorcontrib>Zhang, Huaxun</creatorcontrib><creatorcontrib>Lin, Wen</creatorcontrib><creatorcontrib>Fan, Yunzhou</creatorcontrib><creatorcontrib>Qiu, Juan</creatorcontrib><creatorcontrib>Sun, Liqian</creatorcontrib><creatorcontrib>Chang, Bianrong</creatorcontrib><creatorcontrib>Zhang, Zhijie</creatorcontrib><creatorcontrib>Nie, Shaofa</creatorcontrib><title>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</title><title>Malaria journal</title><addtitle>Malar J</addtitle><description>Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province.
Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model.
The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007.
The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.</description><subject>Analysis</subject><subject>China - epidemiology</subject><subject>Control</subject><subject>Geographic information systems</subject><subject>Geography, Medical</subject><subject>Humans</subject><subject>Incidence</subject><subject>Malaria</subject><subject>Malaria - epidemiology</subject><subject>Retrospective Studies</subject><subject>Risk factors</subject><subject>Spatio-Temporal Analysis</subject><issn>1475-2875</issn><issn>1475-2875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptUU1LHTEUDdJSv_oD3JRAN104NjeTycdGkEf9AKGF1nXIZBJNmUmeyTzBf2-Gp6IgWeRy7jmHe-9B6AjICYDkPwtQ1fKGQNcQ3pGG7qA9YKJrqBTdpzf1Ltov5T8hIKSgX9Au7aRQjIk9ZP6uzRzMeIxnN61TXioTB1wWOL1gFTLjYwkFJ48nM5ocDA4RX256F_CfnB5CtO4Yr-5CNNjnNGFKCGsoAThEn70Zi_v6_B-gm_Nf_1aXzfXvi6vV2XVjGedz0zPPvDPQS6-4coPsOaXKWyENBeos9YZJ6L1VXa9ASeltLyxzjAzeM8vbA3S69V1v-skN1sW5Tq7XOUwmP-pkgn7fieFO36YHzVrVyk5Wgx_PBjndb1yZ9RSKdeNookubooELRqHlLavU71vqrRmdDtGn6mgXuj7rWD17NSSVdfIBq77BTcGm6Hyo-DsBbAU2p1Ky86_TA9FL4nqbuK6J6yVxTavm29u1XxUvEbdPKhGmEA</recordid><startdate>20150408</startdate><enddate>20150408</enddate><creator>Xia, Jing</creator><creator>Cai, Shunxiang</creator><creator>Zhang, Huaxun</creator><creator>Lin, Wen</creator><creator>Fan, Yunzhou</creator><creator>Qiu, Juan</creator><creator>Sun, Liqian</creator><creator>Chang, Bianrong</creator><creator>Zhang, Zhijie</creator><creator>Nie, Shaofa</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150408</creationdate><title>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</title><author>Xia, Jing ; Cai, Shunxiang ; Zhang, Huaxun ; Lin, Wen ; Fan, Yunzhou ; Qiu, Juan ; Sun, Liqian ; Chang, Bianrong ; Zhang, Zhijie ; Nie, Shaofa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>China - epidemiology</topic><topic>Control</topic><topic>Geographic information systems</topic><topic>Geography, Medical</topic><topic>Humans</topic><topic>Incidence</topic><topic>Malaria</topic><topic>Malaria - epidemiology</topic><topic>Retrospective Studies</topic><topic>Risk factors</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>Cai, Shunxiang</creatorcontrib><creatorcontrib>Zhang, Huaxun</creatorcontrib><creatorcontrib>Lin, Wen</creatorcontrib><creatorcontrib>Fan, Yunzhou</creatorcontrib><creatorcontrib>Qiu, Juan</creatorcontrib><creatorcontrib>Sun, Liqian</creatorcontrib><creatorcontrib>Chang, Bianrong</creatorcontrib><creatorcontrib>Zhang, Zhijie</creatorcontrib><creatorcontrib>Nie, Shaofa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Malaria journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Jing</au><au>Cai, Shunxiang</au><au>Zhang, Huaxun</au><au>Lin, Wen</au><au>Fan, Yunzhou</au><au>Qiu, Juan</au><au>Sun, Liqian</au><au>Chang, Bianrong</au><au>Zhang, Zhijie</au><au>Nie, Shaofa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</atitle><jtitle>Malaria journal</jtitle><addtitle>Malar J</addtitle><date>2015-04-08</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>145</spage><epage>145</epage><pages>145-145</pages><artnum>145</artnum><issn>1475-2875</issn><eissn>1475-2875</eissn><abstract>Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province.
Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model.
The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007.
The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25879447</pmid><doi>10.1186/s12936-015-0650-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-2875 |
ispartof | Malaria journal, 2015-04, Vol.14 (1), p.145-145, Article 145 |
issn | 1475-2875 1475-2875 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393858 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis China - epidemiology Control Geographic information systems Geography, Medical Humans Incidence Malaria Malaria - epidemiology Retrospective Studies Risk factors Spatio-Temporal Analysis |
title | Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial,%20temporal,%20and%20spatiotemporal%20analysis%20of%20malaria%20in%20Hubei%20Province,%20China%20from%202004-2011&rft.jtitle=Malaria%20journal&rft.au=Xia,%20Jing&rft.date=2015-04-08&rft.volume=14&rft.issue=1&rft.spage=145&rft.epage=145&rft.pages=145-145&rft.artnum=145&rft.issn=1475-2875&rft.eissn=1475-2875&rft_id=info:doi/10.1186/s12936-015-0650-2&rft_dat=%3Cgale_pubme%3EA541473850%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1674213634&rft_id=info:pmid/25879447&rft_galeid=A541473850&rfr_iscdi=true |