Loading…

Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011

Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiot...

Full description

Saved in:
Bibliographic Details
Published in:Malaria journal 2015-04, Vol.14 (1), p.145-145, Article 145
Main Authors: Xia, Jing, Cai, Shunxiang, Zhang, Huaxun, Lin, Wen, Fan, Yunzhou, Qiu, Juan, Sun, Liqian, Chang, Bianrong, Zhang, Zhijie, Nie, Shaofa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63
cites cdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63
container_end_page 145
container_issue 1
container_start_page 145
container_title Malaria journal
container_volume 14
creator Xia, Jing
Cai, Shunxiang
Zhang, Huaxun
Lin, Wen
Fan, Yunzhou
Qiu, Juan
Sun, Liqian
Chang, Bianrong
Zhang, Zhijie
Nie, Shaofa
description Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province. Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model. The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007. The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.
doi_str_mv 10.1186/s12936-015-0650-2
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541473850</galeid><sourcerecordid>A541473850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</originalsourceid><addsrcrecordid>eNptUU1LHTEUDdJSv_oD3JRAN104NjeTycdGkEf9AKGF1nXIZBJNmUmeyTzBf2-Gp6IgWeRy7jmHe-9B6AjICYDkPwtQ1fKGQNcQ3pGG7qA9YKJrqBTdpzf1Ltov5T8hIKSgX9Au7aRQjIk9ZP6uzRzMeIxnN61TXioTB1wWOL1gFTLjYwkFJ48nM5ocDA4RX256F_CfnB5CtO4Yr-5CNNjnNGFKCGsoAThEn70Zi_v6_B-gm_Nf_1aXzfXvi6vV2XVjGedz0zPPvDPQS6-4coPsOaXKWyENBeos9YZJ6L1VXa9ASeltLyxzjAzeM8vbA3S69V1v-skN1sW5Tq7XOUwmP-pkgn7fieFO36YHzVrVyk5Wgx_PBjndb1yZ9RSKdeNookubooELRqHlLavU71vqrRmdDtGn6mgXuj7rWD17NSSVdfIBq77BTcGm6Hyo-DsBbAU2p1Ky86_TA9FL4nqbuK6J6yVxTavm29u1XxUvEbdPKhGmEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674213634</pqid></control><display><type>article</type><title>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Xia, Jing ; Cai, Shunxiang ; Zhang, Huaxun ; Lin, Wen ; Fan, Yunzhou ; Qiu, Juan ; Sun, Liqian ; Chang, Bianrong ; Zhang, Zhijie ; Nie, Shaofa</creator><creatorcontrib>Xia, Jing ; Cai, Shunxiang ; Zhang, Huaxun ; Lin, Wen ; Fan, Yunzhou ; Qiu, Juan ; Sun, Liqian ; Chang, Bianrong ; Zhang, Zhijie ; Nie, Shaofa</creatorcontrib><description>Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province. Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model. The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007. The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.</description><identifier>ISSN: 1475-2875</identifier><identifier>EISSN: 1475-2875</identifier><identifier>DOI: 10.1186/s12936-015-0650-2</identifier><identifier>PMID: 25879447</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; China - epidemiology ; Control ; Geographic information systems ; Geography, Medical ; Humans ; Incidence ; Malaria ; Malaria - epidemiology ; Retrospective Studies ; Risk factors ; Spatio-Temporal Analysis</subject><ispartof>Malaria journal, 2015-04, Vol.14 (1), p.145-145, Article 145</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Xia et al.; licensee BioMed Central. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</citedby><cites>FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,36994,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25879447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>Cai, Shunxiang</creatorcontrib><creatorcontrib>Zhang, Huaxun</creatorcontrib><creatorcontrib>Lin, Wen</creatorcontrib><creatorcontrib>Fan, Yunzhou</creatorcontrib><creatorcontrib>Qiu, Juan</creatorcontrib><creatorcontrib>Sun, Liqian</creatorcontrib><creatorcontrib>Chang, Bianrong</creatorcontrib><creatorcontrib>Zhang, Zhijie</creatorcontrib><creatorcontrib>Nie, Shaofa</creatorcontrib><title>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</title><title>Malaria journal</title><addtitle>Malar J</addtitle><description>Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province. Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model. The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007. The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.</description><subject>Analysis</subject><subject>China - epidemiology</subject><subject>Control</subject><subject>Geographic information systems</subject><subject>Geography, Medical</subject><subject>Humans</subject><subject>Incidence</subject><subject>Malaria</subject><subject>Malaria - epidemiology</subject><subject>Retrospective Studies</subject><subject>Risk factors</subject><subject>Spatio-Temporal Analysis</subject><issn>1475-2875</issn><issn>1475-2875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptUU1LHTEUDdJSv_oD3JRAN104NjeTycdGkEf9AKGF1nXIZBJNmUmeyTzBf2-Gp6IgWeRy7jmHe-9B6AjICYDkPwtQ1fKGQNcQ3pGG7qA9YKJrqBTdpzf1Ltov5T8hIKSgX9Au7aRQjIk9ZP6uzRzMeIxnN61TXioTB1wWOL1gFTLjYwkFJ48nM5ocDA4RX256F_CfnB5CtO4Yr-5CNNjnNGFKCGsoAThEn70Zi_v6_B-gm_Nf_1aXzfXvi6vV2XVjGedz0zPPvDPQS6-4coPsOaXKWyENBeos9YZJ6L1VXa9ASeltLyxzjAzeM8vbA3S69V1v-skN1sW5Tq7XOUwmP-pkgn7fieFO36YHzVrVyk5Wgx_PBjndb1yZ9RSKdeNookubooELRqHlLavU71vqrRmdDtGn6mgXuj7rWD17NSSVdfIBq77BTcGm6Hyo-DsBbAU2p1Ky86_TA9FL4nqbuK6J6yVxTavm29u1XxUvEbdPKhGmEA</recordid><startdate>20150408</startdate><enddate>20150408</enddate><creator>Xia, Jing</creator><creator>Cai, Shunxiang</creator><creator>Zhang, Huaxun</creator><creator>Lin, Wen</creator><creator>Fan, Yunzhou</creator><creator>Qiu, Juan</creator><creator>Sun, Liqian</creator><creator>Chang, Bianrong</creator><creator>Zhang, Zhijie</creator><creator>Nie, Shaofa</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150408</creationdate><title>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</title><author>Xia, Jing ; Cai, Shunxiang ; Zhang, Huaxun ; Lin, Wen ; Fan, Yunzhou ; Qiu, Juan ; Sun, Liqian ; Chang, Bianrong ; Zhang, Zhijie ; Nie, Shaofa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>China - epidemiology</topic><topic>Control</topic><topic>Geographic information systems</topic><topic>Geography, Medical</topic><topic>Humans</topic><topic>Incidence</topic><topic>Malaria</topic><topic>Malaria - epidemiology</topic><topic>Retrospective Studies</topic><topic>Risk factors</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Jing</creatorcontrib><creatorcontrib>Cai, Shunxiang</creatorcontrib><creatorcontrib>Zhang, Huaxun</creatorcontrib><creatorcontrib>Lin, Wen</creatorcontrib><creatorcontrib>Fan, Yunzhou</creatorcontrib><creatorcontrib>Qiu, Juan</creatorcontrib><creatorcontrib>Sun, Liqian</creatorcontrib><creatorcontrib>Chang, Bianrong</creatorcontrib><creatorcontrib>Zhang, Zhijie</creatorcontrib><creatorcontrib>Nie, Shaofa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Malaria journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Jing</au><au>Cai, Shunxiang</au><au>Zhang, Huaxun</au><au>Lin, Wen</au><au>Fan, Yunzhou</au><au>Qiu, Juan</au><au>Sun, Liqian</au><au>Chang, Bianrong</au><au>Zhang, Zhijie</au><au>Nie, Shaofa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011</atitle><jtitle>Malaria journal</jtitle><addtitle>Malar J</addtitle><date>2015-04-08</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>145</spage><epage>145</epage><pages>145-145</pages><artnum>145</artnum><issn>1475-2875</issn><eissn>1475-2875</eissn><abstract>Malaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province. Annual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model. The overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran's I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007. The GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25879447</pmid><doi>10.1186/s12936-015-0650-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2875
ispartof Malaria journal, 2015-04, Vol.14 (1), p.145-145, Article 145
issn 1475-2875
1475-2875
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393858
source Publicly Available Content Database; PubMed Central
subjects Analysis
China - epidemiology
Control
Geographic information systems
Geography, Medical
Humans
Incidence
Malaria
Malaria - epidemiology
Retrospective Studies
Risk factors
Spatio-Temporal Analysis
title Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004-2011
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial,%20temporal,%20and%20spatiotemporal%20analysis%20of%20malaria%20in%20Hubei%20Province,%20China%20from%202004-2011&rft.jtitle=Malaria%20journal&rft.au=Xia,%20Jing&rft.date=2015-04-08&rft.volume=14&rft.issue=1&rft.spage=145&rft.epage=145&rft.pages=145-145&rft.artnum=145&rft.issn=1475-2875&rft.eissn=1475-2875&rft_id=info:doi/10.1186/s12936-015-0650-2&rft_dat=%3Cgale_pubme%3EA541473850%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-b4f4fea1b8f969ed8b6229fc78a212ec2fa481bfc95b91988fcb7c4e40dff4c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1674213634&rft_id=info:pmid/25879447&rft_galeid=A541473850&rfr_iscdi=true