Loading…

Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates u...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-04, Vol.5 (1), p.9974-9974, Article 9974
Main Authors: Choi, Won Jin, Jung, Jongjin, Lee, Sujin, Chung, Yoon Jang, Yang, Cheol-Soo, Lee, Young Kuk, Lee, You-Seop, Park, Joung Kyu, Ko, Hyuk Wan, Lee, Jeong-O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03
cites cdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03
container_end_page 9974
container_issue 1
container_start_page 9974
container_title Scientific reports
container_volume 5
creator Choi, Won Jin
Jung, Jongjin
Lee, Sujin
Chung, Yoon Jang
Yang, Cheol-Soo
Lee, Young Kuk
Lee, You-Seop
Park, Joung Kyu
Ko, Hyuk Wan
Lee, Jeong-O
description We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.
doi_str_mv 10.1038/srep09974
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4404712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899508727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</originalsourceid><addsrcrecordid>eNplkc9u1DAQxi0EolXpgRdAlrhARcB27CS-VEJV-SNV6gUuXCzHGWddJXawnaJ9AZ67Xm1ZLeDLWJ7ffJ6ZD6GXlLynpO4-pAgLkbLlT9ApI1xUrGbs6dH9BJ2ndEfKEUxyKp-jEya6UtA1p-j3tbVgcsLB4rT2KUedAZvgh9Vkd-_yFgePDUwTnkNcNmEED8klrP2AlxgmZ6GUuAKtyfkRZ-2mEGF4h3UOszN40luIeIAlJLfjqjGGXx7_8Lc4b5zH1k1zeoGeWT0lOH-MZ-j7p-tvV1-qm9vPX68-3lRGEJ6rloqaguFMUOBgpa01043W_UAlGwboG2H61goj9KCbvhe615YRPRjgWlpSn6HLve6y9jOUZ18GntQS3azjVgXt1N8Z7zZqDPeKc8JbyorAm0eBGH6ukLKaXdqtR3sIa1K0aUXXyFbKgr7-B70La_RlPEU7KQXpWtYW6u2eMjGk4qU9NEOJ2hmsDgYX9tVx9wfyj50FuNgDqaT8CPHoy__UHgBaBrUu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899508727</pqid></control><display><type>article</type><title>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Choi, Won Jin ; Jung, Jongjin ; Lee, Sujin ; Chung, Yoon Jang ; Yang, Cheol-Soo ; Lee, Young Kuk ; Lee, You-Seop ; Park, Joung Kyu ; Ko, Hyuk Wan ; Lee, Jeong-O</creator><creatorcontrib>Choi, Won Jin ; Jung, Jongjin ; Lee, Sujin ; Chung, Yoon Jang ; Yang, Cheol-Soo ; Lee, Young Kuk ; Lee, You-Seop ; Park, Joung Kyu ; Ko, Hyuk Wan ; Lee, Jeong-O</creatorcontrib><description>We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep09974</identifier><identifier>PMID: 25897486</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 147/135 ; 147/3 ; 631/80/79/2027 ; 631/80/79/2066 ; 639/301/357/551 ; Adhesion ; Cell adhesion ; Cell Adhesion - drug effects ; Cell Line ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Conductivity ; Electric Conductivity ; Electrical conductivity ; Electrostatic properties ; Extracellular Matrix - metabolism ; Glioblastoma ; Glioblastoma cells ; Humanities and Social Sciences ; Humans ; Inactivation ; Ions - chemistry ; Microscopy, Fluorescence ; Morphogenesis ; multidisciplinary ; Photovoltaic cells ; Physical characteristics ; Science ; Static Electricity ; Substrates ; Surface Properties ; Thin films ; Zinc - chemistry ; Zinc - toxicity ; Zinc Oxide - chemistry</subject><ispartof>Scientific reports, 2015-04, Vol.5 (1), p.9974-9974, Article 9974</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Apr 2015</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</citedby><cites>FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899508727/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899508727?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25897486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Won Jin</creatorcontrib><creatorcontrib>Jung, Jongjin</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Chung, Yoon Jang</creatorcontrib><creatorcontrib>Yang, Cheol-Soo</creatorcontrib><creatorcontrib>Lee, Young Kuk</creatorcontrib><creatorcontrib>Lee, You-Seop</creatorcontrib><creatorcontrib>Park, Joung Kyu</creatorcontrib><creatorcontrib>Ko, Hyuk Wan</creatorcontrib><creatorcontrib>Lee, Jeong-O</creatorcontrib><title>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.</description><subject>13/51</subject><subject>14/19</subject><subject>147/135</subject><subject>147/3</subject><subject>631/80/79/2027</subject><subject>631/80/79/2066</subject><subject>639/301/357/551</subject><subject>Adhesion</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Conductivity</subject><subject>Electric Conductivity</subject><subject>Electrical conductivity</subject><subject>Electrostatic properties</subject><subject>Extracellular Matrix - metabolism</subject><subject>Glioblastoma</subject><subject>Glioblastoma cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Ions - chemistry</subject><subject>Microscopy, Fluorescence</subject><subject>Morphogenesis</subject><subject>multidisciplinary</subject><subject>Photovoltaic cells</subject><subject>Physical characteristics</subject><subject>Science</subject><subject>Static Electricity</subject><subject>Substrates</subject><subject>Surface Properties</subject><subject>Thin films</subject><subject>Zinc - chemistry</subject><subject>Zinc - toxicity</subject><subject>Zinc Oxide - chemistry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc9u1DAQxi0EolXpgRdAlrhARcB27CS-VEJV-SNV6gUuXCzHGWddJXawnaJ9AZ67Xm1ZLeDLWJ7ffJ6ZD6GXlLynpO4-pAgLkbLlT9ApI1xUrGbs6dH9BJ2ndEfKEUxyKp-jEya6UtA1p-j3tbVgcsLB4rT2KUedAZvgh9Vkd-_yFgePDUwTnkNcNmEED8klrP2AlxgmZ6GUuAKtyfkRZ-2mEGF4h3UOszN40luIeIAlJLfjqjGGXx7_8Lc4b5zH1k1zeoGeWT0lOH-MZ-j7p-tvV1-qm9vPX68-3lRGEJ6rloqaguFMUOBgpa01043W_UAlGwboG2H61goj9KCbvhe615YRPRjgWlpSn6HLve6y9jOUZ18GntQS3azjVgXt1N8Z7zZqDPeKc8JbyorAm0eBGH6ukLKaXdqtR3sIa1K0aUXXyFbKgr7-B70La_RlPEU7KQXpWtYW6u2eMjGk4qU9NEOJ2hmsDgYX9tVx9wfyj50FuNgDqaT8CPHoy__UHgBaBrUu</recordid><startdate>20150421</startdate><enddate>20150421</enddate><creator>Choi, Won Jin</creator><creator>Jung, Jongjin</creator><creator>Lee, Sujin</creator><creator>Chung, Yoon Jang</creator><creator>Yang, Cheol-Soo</creator><creator>Lee, Young Kuk</creator><creator>Lee, You-Seop</creator><creator>Park, Joung Kyu</creator><creator>Ko, Hyuk Wan</creator><creator>Lee, Jeong-O</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150421</creationdate><title>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</title><author>Choi, Won Jin ; Jung, Jongjin ; Lee, Sujin ; Chung, Yoon Jang ; Yang, Cheol-Soo ; Lee, Young Kuk ; Lee, You-Seop ; Park, Joung Kyu ; Ko, Hyuk Wan ; Lee, Jeong-O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/51</topic><topic>14/19</topic><topic>147/135</topic><topic>147/3</topic><topic>631/80/79/2027</topic><topic>631/80/79/2066</topic><topic>639/301/357/551</topic><topic>Adhesion</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Conductivity</topic><topic>Electric Conductivity</topic><topic>Electrical conductivity</topic><topic>Electrostatic properties</topic><topic>Extracellular Matrix - metabolism</topic><topic>Glioblastoma</topic><topic>Glioblastoma cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Ions - chemistry</topic><topic>Microscopy, Fluorescence</topic><topic>Morphogenesis</topic><topic>multidisciplinary</topic><topic>Photovoltaic cells</topic><topic>Physical characteristics</topic><topic>Science</topic><topic>Static Electricity</topic><topic>Substrates</topic><topic>Surface Properties</topic><topic>Thin films</topic><topic>Zinc - chemistry</topic><topic>Zinc - toxicity</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Won Jin</creatorcontrib><creatorcontrib>Jung, Jongjin</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Chung, Yoon Jang</creatorcontrib><creatorcontrib>Yang, Cheol-Soo</creatorcontrib><creatorcontrib>Lee, Young Kuk</creatorcontrib><creatorcontrib>Lee, You-Seop</creatorcontrib><creatorcontrib>Park, Joung Kyu</creatorcontrib><creatorcontrib>Ko, Hyuk Wan</creatorcontrib><creatorcontrib>Lee, Jeong-O</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Won Jin</au><au>Jung, Jongjin</au><au>Lee, Sujin</au><au>Chung, Yoon Jang</au><au>Yang, Cheol-Soo</au><au>Lee, Young Kuk</au><au>Lee, You-Seop</au><au>Park, Joung Kyu</au><au>Ko, Hyuk Wan</au><au>Lee, Jeong-O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-04-21</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>9974</spage><epage>9974</epage><pages>9974-9974</pages><artnum>9974</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25897486</pmid><doi>10.1038/srep09974</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-04, Vol.5 (1), p.9974-9974, Article 9974
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4404712
source NCBI_PubMed Central(免费); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/51
14/19
147/135
147/3
631/80/79/2027
631/80/79/2066
639/301/357/551
Adhesion
Cell adhesion
Cell Adhesion - drug effects
Cell Line
Cell proliferation
Cell Proliferation - drug effects
Cell Survival - drug effects
Conductivity
Electric Conductivity
Electrical conductivity
Electrostatic properties
Extracellular Matrix - metabolism
Glioblastoma
Glioblastoma cells
Humanities and Social Sciences
Humans
Inactivation
Ions - chemistry
Microscopy, Fluorescence
Morphogenesis
multidisciplinary
Photovoltaic cells
Physical characteristics
Science
Static Electricity
Substrates
Surface Properties
Thin films
Zinc - chemistry
Zinc - toxicity
Zinc Oxide - chemistry
title Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20substrate%20conductivity%20on%20cell%20morphogenesis%20and%20proliferation%20using%20tailored,%20atomic%20layer%20deposition-grown%20ZnO%20thin%20films&rft.jtitle=Scientific%20reports&rft.au=Choi,%20Won%20Jin&rft.date=2015-04-21&rft.volume=5&rft.issue=1&rft.spage=9974&rft.epage=9974&rft.pages=9974-9974&rft.artnum=9974&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep09974&rft_dat=%3Cproquest_pubme%3E1899508727%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899508727&rft_id=info:pmid/25897486&rfr_iscdi=true