Loading…
Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films
We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates u...
Saved in:
Published in: | Scientific reports 2015-04, Vol.5 (1), p.9974-9974, Article 9974 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03 |
container_end_page | 9974 |
container_issue | 1 |
container_start_page | 9974 |
container_title | Scientific reports |
container_volume | 5 |
creator | Choi, Won Jin Jung, Jongjin Lee, Sujin Chung, Yoon Jang Yang, Cheol-Soo Lee, Young Kuk Lee, You-Seop Park, Joung Kyu Ko, Hyuk Wan Lee, Jeong-O |
description | We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. |
doi_str_mv | 10.1038/srep09974 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4404712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899508727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</originalsourceid><addsrcrecordid>eNplkc9u1DAQxi0EolXpgRdAlrhARcB27CS-VEJV-SNV6gUuXCzHGWddJXawnaJ9AZ67Xm1ZLeDLWJ7ffJ6ZD6GXlLynpO4-pAgLkbLlT9ApI1xUrGbs6dH9BJ2ndEfKEUxyKp-jEya6UtA1p-j3tbVgcsLB4rT2KUedAZvgh9Vkd-_yFgePDUwTnkNcNmEED8klrP2AlxgmZ6GUuAKtyfkRZ-2mEGF4h3UOszN40luIeIAlJLfjqjGGXx7_8Lc4b5zH1k1zeoGeWT0lOH-MZ-j7p-tvV1-qm9vPX68-3lRGEJ6rloqaguFMUOBgpa01043W_UAlGwboG2H61goj9KCbvhe615YRPRjgWlpSn6HLve6y9jOUZ18GntQS3azjVgXt1N8Z7zZqDPeKc8JbyorAm0eBGH6ukLKaXdqtR3sIa1K0aUXXyFbKgr7-B70La_RlPEU7KQXpWtYW6u2eMjGk4qU9NEOJ2hmsDgYX9tVx9wfyj50FuNgDqaT8CPHoy__UHgBaBrUu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899508727</pqid></control><display><type>article</type><title>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Choi, Won Jin ; Jung, Jongjin ; Lee, Sujin ; Chung, Yoon Jang ; Yang, Cheol-Soo ; Lee, Young Kuk ; Lee, You-Seop ; Park, Joung Kyu ; Ko, Hyuk Wan ; Lee, Jeong-O</creator><creatorcontrib>Choi, Won Jin ; Jung, Jongjin ; Lee, Sujin ; Chung, Yoon Jang ; Yang, Cheol-Soo ; Lee, Young Kuk ; Lee, You-Seop ; Park, Joung Kyu ; Ko, Hyuk Wan ; Lee, Jeong-O</creatorcontrib><description>We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep09974</identifier><identifier>PMID: 25897486</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 147/135 ; 147/3 ; 631/80/79/2027 ; 631/80/79/2066 ; 639/301/357/551 ; Adhesion ; Cell adhesion ; Cell Adhesion - drug effects ; Cell Line ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Conductivity ; Electric Conductivity ; Electrical conductivity ; Electrostatic properties ; Extracellular Matrix - metabolism ; Glioblastoma ; Glioblastoma cells ; Humanities and Social Sciences ; Humans ; Inactivation ; Ions - chemistry ; Microscopy, Fluorescence ; Morphogenesis ; multidisciplinary ; Photovoltaic cells ; Physical characteristics ; Science ; Static Electricity ; Substrates ; Surface Properties ; Thin films ; Zinc - chemistry ; Zinc - toxicity ; Zinc Oxide - chemistry</subject><ispartof>Scientific reports, 2015-04, Vol.5 (1), p.9974-9974, Article 9974</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Apr 2015</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</citedby><cites>FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899508727/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899508727?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25897486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Won Jin</creatorcontrib><creatorcontrib>Jung, Jongjin</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Chung, Yoon Jang</creatorcontrib><creatorcontrib>Yang, Cheol-Soo</creatorcontrib><creatorcontrib>Lee, Young Kuk</creatorcontrib><creatorcontrib>Lee, You-Seop</creatorcontrib><creatorcontrib>Park, Joung Kyu</creatorcontrib><creatorcontrib>Ko, Hyuk Wan</creatorcontrib><creatorcontrib>Lee, Jeong-O</creatorcontrib><title>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.</description><subject>13/51</subject><subject>14/19</subject><subject>147/135</subject><subject>147/3</subject><subject>631/80/79/2027</subject><subject>631/80/79/2066</subject><subject>639/301/357/551</subject><subject>Adhesion</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Conductivity</subject><subject>Electric Conductivity</subject><subject>Electrical conductivity</subject><subject>Electrostatic properties</subject><subject>Extracellular Matrix - metabolism</subject><subject>Glioblastoma</subject><subject>Glioblastoma cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Ions - chemistry</subject><subject>Microscopy, Fluorescence</subject><subject>Morphogenesis</subject><subject>multidisciplinary</subject><subject>Photovoltaic cells</subject><subject>Physical characteristics</subject><subject>Science</subject><subject>Static Electricity</subject><subject>Substrates</subject><subject>Surface Properties</subject><subject>Thin films</subject><subject>Zinc - chemistry</subject><subject>Zinc - toxicity</subject><subject>Zinc Oxide - chemistry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc9u1DAQxi0EolXpgRdAlrhARcB27CS-VEJV-SNV6gUuXCzHGWddJXawnaJ9AZ67Xm1ZLeDLWJ7ffJ6ZD6GXlLynpO4-pAgLkbLlT9ApI1xUrGbs6dH9BJ2ndEfKEUxyKp-jEya6UtA1p-j3tbVgcsLB4rT2KUedAZvgh9Vkd-_yFgePDUwTnkNcNmEED8klrP2AlxgmZ6GUuAKtyfkRZ-2mEGF4h3UOszN40luIeIAlJLfjqjGGXx7_8Lc4b5zH1k1zeoGeWT0lOH-MZ-j7p-tvV1-qm9vPX68-3lRGEJ6rloqaguFMUOBgpa01043W_UAlGwboG2H61goj9KCbvhe615YRPRjgWlpSn6HLve6y9jOUZ18GntQS3azjVgXt1N8Z7zZqDPeKc8JbyorAm0eBGH6ukLKaXdqtR3sIa1K0aUXXyFbKgr7-B70La_RlPEU7KQXpWtYW6u2eMjGk4qU9NEOJ2hmsDgYX9tVx9wfyj50FuNgDqaT8CPHoy__UHgBaBrUu</recordid><startdate>20150421</startdate><enddate>20150421</enddate><creator>Choi, Won Jin</creator><creator>Jung, Jongjin</creator><creator>Lee, Sujin</creator><creator>Chung, Yoon Jang</creator><creator>Yang, Cheol-Soo</creator><creator>Lee, Young Kuk</creator><creator>Lee, You-Seop</creator><creator>Park, Joung Kyu</creator><creator>Ko, Hyuk Wan</creator><creator>Lee, Jeong-O</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150421</creationdate><title>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</title><author>Choi, Won Jin ; Jung, Jongjin ; Lee, Sujin ; Chung, Yoon Jang ; Yang, Cheol-Soo ; Lee, Young Kuk ; Lee, You-Seop ; Park, Joung Kyu ; Ko, Hyuk Wan ; Lee, Jeong-O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/51</topic><topic>14/19</topic><topic>147/135</topic><topic>147/3</topic><topic>631/80/79/2027</topic><topic>631/80/79/2066</topic><topic>639/301/357/551</topic><topic>Adhesion</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Conductivity</topic><topic>Electric Conductivity</topic><topic>Electrical conductivity</topic><topic>Electrostatic properties</topic><topic>Extracellular Matrix - metabolism</topic><topic>Glioblastoma</topic><topic>Glioblastoma cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Ions - chemistry</topic><topic>Microscopy, Fluorescence</topic><topic>Morphogenesis</topic><topic>multidisciplinary</topic><topic>Photovoltaic cells</topic><topic>Physical characteristics</topic><topic>Science</topic><topic>Static Electricity</topic><topic>Substrates</topic><topic>Surface Properties</topic><topic>Thin films</topic><topic>Zinc - chemistry</topic><topic>Zinc - toxicity</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Won Jin</creatorcontrib><creatorcontrib>Jung, Jongjin</creatorcontrib><creatorcontrib>Lee, Sujin</creatorcontrib><creatorcontrib>Chung, Yoon Jang</creatorcontrib><creatorcontrib>Yang, Cheol-Soo</creatorcontrib><creatorcontrib>Lee, Young Kuk</creatorcontrib><creatorcontrib>Lee, You-Seop</creatorcontrib><creatorcontrib>Park, Joung Kyu</creatorcontrib><creatorcontrib>Ko, Hyuk Wan</creatorcontrib><creatorcontrib>Lee, Jeong-O</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Won Jin</au><au>Jung, Jongjin</au><au>Lee, Sujin</au><au>Chung, Yoon Jang</au><au>Yang, Cheol-Soo</au><au>Lee, Young Kuk</au><au>Lee, You-Seop</au><au>Park, Joung Kyu</au><au>Ko, Hyuk Wan</au><au>Lee, Jeong-O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-04-21</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>9974</spage><epage>9974</epage><pages>9974-9974</pages><artnum>9974</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25897486</pmid><doi>10.1038/srep09974</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-04, Vol.5 (1), p.9974-9974, Article 9974 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4404712 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/51 14/19 147/135 147/3 631/80/79/2027 631/80/79/2066 639/301/357/551 Adhesion Cell adhesion Cell Adhesion - drug effects Cell Line Cell proliferation Cell Proliferation - drug effects Cell Survival - drug effects Conductivity Electric Conductivity Electrical conductivity Electrostatic properties Extracellular Matrix - metabolism Glioblastoma Glioblastoma cells Humanities and Social Sciences Humans Inactivation Ions - chemistry Microscopy, Fluorescence Morphogenesis multidisciplinary Photovoltaic cells Physical characteristics Science Static Electricity Substrates Surface Properties Thin films Zinc - chemistry Zinc - toxicity Zinc Oxide - chemistry |
title | Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20substrate%20conductivity%20on%20cell%20morphogenesis%20and%20proliferation%20using%20tailored,%20atomic%20layer%20deposition-grown%20ZnO%20thin%20films&rft.jtitle=Scientific%20reports&rft.au=Choi,%20Won%20Jin&rft.date=2015-04-21&rft.volume=5&rft.issue=1&rft.spage=9974&rft.epage=9974&rft.pages=9974-9974&rft.artnum=9974&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep09974&rft_dat=%3Cproquest_pubme%3E1899508727%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-71531ec4251e4ef9f3a2a6aabd192ddeb65cb7f5c5ada6bb5abaf20adce4a9f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899508727&rft_id=info:pmid/25897486&rfr_iscdi=true |