Loading…

Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae

Monoterpenes are liquid hydrocarbons with applications ranging from flavor and fragrance to replacement jet fuel. Their toxicity, however, presents a major challenge for microbial synthesis. Here we evolved limonene-tolerant Saccharomyces cerevisiae strains and sequenced six strains across the 200-g...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 2015-05, Vol.81 (10), p.3316-3325
Main Authors: Brennan, Timothy C R, Williams, Thomas C, Schulz, Benjamin L, Palfreyman, Robin W, Krömer, Jens O, Nielsen, Lars K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monoterpenes are liquid hydrocarbons with applications ranging from flavor and fragrance to replacement jet fuel. Their toxicity, however, presents a major challenge for microbial synthesis. Here we evolved limonene-tolerant Saccharomyces cerevisiae strains and sequenced six strains across the 200-generation evolutionary time course. Mutations were found in the tricalbin proteins Tcb2p and Tcb3p. Genomic reconstruction in the parent strain showed that truncation of a single protein (tTcb3p(1-989)), but not its complete deletion, was sufficient to recover the evolved phenotype improving limonene fitness 9-fold. tTcb3p(1-989) increased tolerance toward two other monoterpenes (β-pinene and myrcene) 11- and 8-fold, respectively, and tolerance toward the biojet fuel blend AMJ-700t (10% cymene, 50% limonene, 40% farnesene) 4-fold. tTcb3p(1-989) is the first example of successful engineering of phase tolerance and creates opportunities for production of the highly toxic C10 alkenes in yeast.
ISSN:0099-2240
1098-5336
1098-6596
DOI:10.1128/AEM.04144-14