Loading…

Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance

Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotax...

Full description

Saved in:
Bibliographic Details
Published in:Oncotarget 2015-02, Vol.6 (5), p.2827-2842
Main Authors: Wang, He, Yin, Henghui, Yan, Fengjiao, Sun, Mingna, Du, Lingran, Peng, Wei, Li, Qiuli, Feng, Yinghong, Zhou, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-dd5486a646af681bd5207a32e451eec327ae2d54c5b1808c63c377f815b332533
cites cdi_FETCH-LOGICAL-c326t-dd5486a646af681bd5207a32e451eec327ae2d54c5b1808c63c377f815b332533
container_end_page 2842
container_issue 5
container_start_page 2827
container_title Oncotarget
container_volume 6
creator Wang, He
Yin, Henghui
Yan, Fengjiao
Sun, Mingna
Du, Lingran
Peng, Wei
Li, Qiuli
Feng, Yinghong
Zhou, Yi
description Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers.
doi_str_mv 10.18632/oncotarget.3090
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4413620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1661330581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-dd5486a646af681bd5207a32e451eec327ae2d54c5b1808c63c377f815b332533</originalsourceid><addsrcrecordid>eNpVUctKBDEQDKKo6N49yRy9zJrHJJO9CCK-QPCi55DJ9O5GMsmaZNT9e6Prsy_V0NVV3RRCRwRPiRSMngZvQtZxAXnK8AxvoX0ya2Y15Zxt_-n30CSlJ1yKN62ks120R7nAHBO5j-JVcDpDPUBvC_bVYHMwy-D7aLWrNvLWL6pXm5dVH95CHDtrrK9Xwa1j8X_THiqvfVjpmK1xkKrwAtGEoXTD6LLt47ioIiSbsvYGDtHOXLsEky88QI9Xlw8XN_Xd_fXtxfldbRgVue573kihRSP0XEjS9ZziVjMKDScAhdNqoIVjeEcklkYww9p2LgnvGKOcsQN0ttFdjV15z4DPUTu1inbQca2Ctur_xNulWoQX1TSECYqLwMmXQAzPI6SsBpsMOFc-DmNSRAjCGOaSFCreUE0MKUWY_9gQrD7TUr9pqY-0ysrx3_N-Fr6zYe-PU5fm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661330581</pqid></control><display><type>article</type><title>Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance</title><source>PubMed Central Free</source><creator>Wang, He ; Yin, Henghui ; Yan, Fengjiao ; Sun, Mingna ; Du, Lingran ; Peng, Wei ; Li, Qiuli ; Feng, Yinghong ; Zhou, Yi</creator><creatorcontrib>Wang, He ; Yin, Henghui ; Yan, Fengjiao ; Sun, Mingna ; Du, Lingran ; Peng, Wei ; Li, Qiuli ; Feng, Yinghong ; Zhou, Yi</creatorcontrib><description>Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.3090</identifier><identifier>PMID: 25605018</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Animals ; Antibiotics, Antineoplastic - chemistry ; Antibiotics, Antineoplastic - metabolism ; Antibiotics, Antineoplastic - pharmacology ; Apoptosis - drug effects ; Apoptosis Regulatory Proteins - metabolism ; Breast Neoplasms - drug therapy ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell Proliferation - drug effects ; Chemistry, Pharmaceutical ; Cyclodextrins - chemistry ; Dose-Response Relationship, Drug ; Doxorubicin - chemistry ; Doxorubicin - metabolism ; Doxorubicin - pharmacology ; Drug Carriers ; Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; Endoplasmic Reticulum - drug effects ; Endoplasmic Reticulum - metabolism ; Female ; Folic Acid - metabolism ; Humans ; MCF-7 Cells ; Mice, Inbred BALB C ; Mice, Nude ; Mitochondria - drug effects ; Mitochondria - metabolism ; Nanoparticles ; Poloxamer - chemistry ; Research Paper ; Rotaxanes - chemistry ; Signal Transduction - drug effects ; Solubility ; Time Factors ; Xenograft Model Antitumor Assays</subject><ispartof>Oncotarget, 2015-02, Vol.6 (5), p.2827-2842</ispartof><rights>Copyright: © 2015 Wang et al. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-dd5486a646af681bd5207a32e451eec327ae2d54c5b1808c63c377f815b332533</citedby><cites>FETCH-LOGICAL-c326t-dd5486a646af681bd5207a32e451eec327ae2d54c5b1808c63c377f815b332533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413620/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413620/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25605018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Yin, Henghui</creatorcontrib><creatorcontrib>Yan, Fengjiao</creatorcontrib><creatorcontrib>Sun, Mingna</creatorcontrib><creatorcontrib>Du, Lingran</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Li, Qiuli</creatorcontrib><creatorcontrib>Feng, Yinghong</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><title>Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance</title><title>Oncotarget</title><addtitle>Oncotarget</addtitle><description>Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers.</description><subject>Animals</subject><subject>Antibiotics, Antineoplastic - chemistry</subject><subject>Antibiotics, Antineoplastic - metabolism</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Cyclodextrins - chemistry</subject><subject>Dose-Response Relationship, Drug</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - metabolism</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug Carriers</subject><subject>Drug Resistance, Multiple</subject><subject>Drug Resistance, Neoplasm</subject><subject>Endoplasmic Reticulum - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Female</subject><subject>Folic Acid - metabolism</subject><subject>Humans</subject><subject>MCF-7 Cells</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Nanoparticles</subject><subject>Poloxamer - chemistry</subject><subject>Research Paper</subject><subject>Rotaxanes - chemistry</subject><subject>Signal Transduction - drug effects</subject><subject>Solubility</subject><subject>Time Factors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVUctKBDEQDKKo6N49yRy9zJrHJJO9CCK-QPCi55DJ9O5GMsmaZNT9e6Prsy_V0NVV3RRCRwRPiRSMngZvQtZxAXnK8AxvoX0ya2Y15Zxt_-n30CSlJ1yKN62ks120R7nAHBO5j-JVcDpDPUBvC_bVYHMwy-D7aLWrNvLWL6pXm5dVH95CHDtrrK9Xwa1j8X_THiqvfVjpmK1xkKrwAtGEoXTD6LLt47ioIiSbsvYGDtHOXLsEky88QI9Xlw8XN_Xd_fXtxfldbRgVue573kihRSP0XEjS9ZziVjMKDScAhdNqoIVjeEcklkYww9p2LgnvGKOcsQN0ttFdjV15z4DPUTu1inbQca2Ctur_xNulWoQX1TSECYqLwMmXQAzPI6SsBpsMOFc-DmNSRAjCGOaSFCreUE0MKUWY_9gQrD7TUr9pqY-0ysrx3_N-Fr6zYe-PU5fm</recordid><startdate>20150220</startdate><enddate>20150220</enddate><creator>Wang, He</creator><creator>Yin, Henghui</creator><creator>Yan, Fengjiao</creator><creator>Sun, Mingna</creator><creator>Du, Lingran</creator><creator>Peng, Wei</creator><creator>Li, Qiuli</creator><creator>Feng, Yinghong</creator><creator>Zhou, Yi</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150220</creationdate><title>Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance</title><author>Wang, He ; Yin, Henghui ; Yan, Fengjiao ; Sun, Mingna ; Du, Lingran ; Peng, Wei ; Li, Qiuli ; Feng, Yinghong ; Zhou, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-dd5486a646af681bd5207a32e451eec327ae2d54c5b1808c63c377f815b332533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antibiotics, Antineoplastic - chemistry</topic><topic>Antibiotics, Antineoplastic - metabolism</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Cyclodextrins - chemistry</topic><topic>Dose-Response Relationship, Drug</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - metabolism</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug Carriers</topic><topic>Drug Resistance, Multiple</topic><topic>Drug Resistance, Neoplasm</topic><topic>Endoplasmic Reticulum - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Female</topic><topic>Folic Acid - metabolism</topic><topic>Humans</topic><topic>MCF-7 Cells</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Nanoparticles</topic><topic>Poloxamer - chemistry</topic><topic>Research Paper</topic><topic>Rotaxanes - chemistry</topic><topic>Signal Transduction - drug effects</topic><topic>Solubility</topic><topic>Time Factors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Yin, Henghui</creatorcontrib><creatorcontrib>Yan, Fengjiao</creatorcontrib><creatorcontrib>Sun, Mingna</creatorcontrib><creatorcontrib>Du, Lingran</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Li, Qiuli</creatorcontrib><creatorcontrib>Feng, Yinghong</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, He</au><au>Yin, Henghui</au><au>Yan, Fengjiao</au><au>Sun, Mingna</au><au>Du, Lingran</au><au>Peng, Wei</au><au>Li, Qiuli</au><au>Feng, Yinghong</au><au>Zhou, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance</atitle><jtitle>Oncotarget</jtitle><addtitle>Oncotarget</addtitle><date>2015-02-20</date><risdate>2015</risdate><volume>6</volume><issue>5</issue><spage>2827</spage><epage>2842</epage><pages>2827-2842</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>25605018</pmid><doi>10.18632/oncotarget.3090</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof Oncotarget, 2015-02, Vol.6 (5), p.2827-2842
issn 1949-2553
1949-2553
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4413620
source PubMed Central Free
subjects Animals
Antibiotics, Antineoplastic - chemistry
Antibiotics, Antineoplastic - metabolism
Antibiotics, Antineoplastic - pharmacology
Apoptosis - drug effects
Apoptosis Regulatory Proteins - metabolism
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Proliferation - drug effects
Chemistry, Pharmaceutical
Cyclodextrins - chemistry
Dose-Response Relationship, Drug
Doxorubicin - chemistry
Doxorubicin - metabolism
Doxorubicin - pharmacology
Drug Carriers
Drug Resistance, Multiple
Drug Resistance, Neoplasm
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - metabolism
Female
Folic Acid - metabolism
Humans
MCF-7 Cells
Mice, Inbred BALB C
Mice, Nude
Mitochondria - drug effects
Mitochondria - metabolism
Nanoparticles
Poloxamer - chemistry
Research Paper
Rotaxanes - chemistry
Signal Transduction - drug effects
Solubility
Time Factors
Xenograft Model Antitumor Assays
title Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folate-mediated%20mitochondrial%20targeting%20with%20doxorubicin-polyrotaxane%20nanoparticles%20overcomes%20multidrug%20resistance&rft.jtitle=Oncotarget&rft.au=Wang,%20He&rft.date=2015-02-20&rft.volume=6&rft.issue=5&rft.spage=2827&rft.epage=2842&rft.pages=2827-2842&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.3090&rft_dat=%3Cproquest_pubme%3E1661330581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-dd5486a646af681bd5207a32e451eec327ae2d54c5b1808c63c377f815b332533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1661330581&rft_id=info:pmid/25605018&rfr_iscdi=true