Loading…

Using Network Metrics in Soccer: A Macro-Analysis

The aim of this study was to propose a set of network methods to measure the specific properties of a team. These metrics were organised at macro-analysis levels. The interactions between teammates were collected and then processed following the analysis levels herein announced. Overall, 577 offensi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of human kinetics 2015-03, Vol.45 (1), p.123-134
Main Authors: Clemente, Filipe Manuel, Couceiro, Micael Santos, Martins, Fernando Manuel Lourenço, Mendes, Rui Sousa
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to propose a set of network methods to measure the specific properties of a team. These metrics were organised at macro-analysis levels. The interactions between teammates were collected and then processed following the analysis levels herein announced. Overall, 577 offensive plays were analysed from five matches. The network density showed an ambiguous relationship among the team, mainly during the 2nd half. The mean values of density for all matches were 0.48 in the 1st half, 0.32 in the 2nd half and 0.34 for the whole match. The heterogeneity coefficient for the overall matches rounded to 0.47 and it was also observed that this increased in all matches in the 2nd half. The centralisation values showed that there was no ‘star topology’. The results suggest that each node (i.e., each player) had nearly the same connectivity, mainly in the 1st half. Nevertheless, the values increased in the 2nd half, showing a decreasing participation of all players at the same level. Briefly, these metrics showed that it is possible to identify how players connect with each other and the kind and strength of the connections between them. In summary, it may be concluded that network metrics can be a powerful tool to help coaches understand team’s specific properties and support decision-making to improve the sports training process based on match analysis.
ISSN:1640-5544
1899-7562
1899-7562
DOI:10.1515/hukin-2015-0013