Loading…

Improved anticancer delivery of paclitaxel by albumin surface modification of PLGA nanoparticles

Background Nanoparticles (NPs) play an important role in anticancer delivery systems. Surface modified NPs with hydrophilic polymers such as human serum albumin (HSA) have long half-life in the blood circulation system. Methods The method of modified nanoprecipitation was utilized for encapsulation...

Full description

Saved in:
Bibliographic Details
Published in:Daru 2015-04, Vol.23 (1), p.28, Article 28
Main Authors: Esfandyari-Manesh, Mehdi, Mostafavi, Seyed Hossein, Majidi, Reza Faridi, Koopaei, Mona Noori, Ravari, Nazanin Shabani, Amini, Mohsen, Darvishi, Behrad, Ostad, Seyed Nasser, Atyabi, Fatemeh, Dinarvand, Rassoul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Nanoparticles (NPs) play an important role in anticancer delivery systems. Surface modified NPs with hydrophilic polymers such as human serum albumin (HSA) have long half-life in the blood circulation system. Methods The method of modified nanoprecipitation was utilized for encapsulation of paclitaxel (PTX) in poly (lactic-co-glycolic acid) (PLGA). Para-maleimide benzoic hydrazide was conjugated to PLGA for the surface modifications of PLGA NPs, and then HSA was attached on the surface of prepared NPs by maleimide attachment to thiol groups (cysteines) of albumin. The application of HSA provides for the longer blood circulation of stealth NPs due to their escape from reticuloendothelial system (RES). Then the physicochemical properties of NPs like surface morphology, size, zeta potential, and in-vitro drug release were analyzed. Results The particle size of NPs ranged from 170 to 190 nm and increased about 20–30 nm after HSA conjugation. The zeta potential was about -6 mV and it decreased further after HSA conjugation. The HSA conjugation in prepared NPs was proved by Fourier transform infrared (FT-IR) spectroscopy, faster degradation of HSA in Differential scanning calorimetry (DSC) characterization, and other evidences such as the increasing in size and the decreasing in zeta potential. The PTX released in a biphasic mode for all colloidal suspensions. A sustained release profile for approximately 33 days was detected after a burst effect of the loaded drug. The in vitro cytotoxicity evaluation also indicated that the HSA NPs are more cytotoxic than plain NPs. Conclusions HSA decoration of PLGA NPs may be a suitable method for longer blood circulation of NPs.
ISSN:2008-2231
1560-8115
2008-2231
DOI:10.1186/s40199-015-0107-8