Loading…

Coordination of contractility, adhesion and flow in migrating Physarum amoebae

This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the veloc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Society interface 2015-05, Vol.12 (106), p.20141359-20141359
Main Authors: Lewis, Owen L., Zhang, Shun, Guy, Robert D., del Álamo, Juan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-6661508e839374f9a31acbdb9a515ecb727532cad8ec1fd4d3318c8c9e2e947f3
cites cdi_FETCH-LOGICAL-c427t-6661508e839374f9a31acbdb9a515ecb727532cad8ec1fd4d3318c8c9e2e947f3
container_end_page 20141359
container_issue 106
container_start_page 20141359
container_title Journal of the Royal Society interface
container_volume 12
creator Lewis, Owen L.
Zhang, Shun
Guy, Robert D.
del Álamo, Juan C.
description This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our experiments show that flow and traction stress exhibit back-to-front-directed waves with a distinct phase difference. The model demonstrates that the direction and speed of locomotion are determined by this coordination between contraction, flow and adhesion. Using the model, we identify forms of coordination that generate model predictions consistent with experiments. We demonstrate that this coordination produces near optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While it is generally thought that amoeboid motility is robust to changes in extracellular geometry and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive forces is essential to producing robust migration.
doi_str_mv 10.1098/rsif.2014.1359
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4424669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819135911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-6661508e839374f9a31acbdb9a515ecb727532cad8ec1fd4d3318c8c9e2e947f3</originalsourceid><addsrcrecordid>eNqFkTtPwzAURi0EoqWwMqKMDLTEr9hekFDFS0LAALPlOE7rKrGLnYDy70nUUsGAmGzrnnt0fT8ATmE6g6nglyHacoZSSGYQU7EHxpARNKVZhvZ3dy5G4CjGVZpihik9BCNERUooomPwNPc-FNapxnqX-DLR3jVB6cZWtukuElUsTRxKyhVJWfnPxLqktovQN7hF8rLsogptnajam1yZY3BQqiqak-05AW-3N6_z--nj893D_PpxqglizTTLMkhTbjgWmJFSKAyVzotcKAqp0TlDjGKkVcGNhmVBCowh11wLg4wgrMQTcLXxrtu8NoU2w9CVXAdbq9BJr6z8XXF2KRf-QxKCSJaJXnC-FQT_3prYyNpGbapKOePbKCGHYtgohP-jGaOccYJxj842qA4-xmDK3UQwlUNecshLDnnJwd43nP38xw7_DqgH8AYIvusX6rU1TSdXvg2uf_6l_QLmAaR4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675878433</pqid></control><display><type>article</type><title>Coordination of contractility, adhesion and flow in migrating Physarum amoebae</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Lewis, Owen L. ; Zhang, Shun ; Guy, Robert D. ; del Álamo, Juan C.</creator><creatorcontrib>Lewis, Owen L. ; Zhang, Shun ; Guy, Robert D. ; del Álamo, Juan C.</creatorcontrib><description>This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our experiments show that flow and traction stress exhibit back-to-front-directed waves with a distinct phase difference. The model demonstrates that the direction and speed of locomotion are determined by this coordination between contraction, flow and adhesion. Using the model, we identify forms of coordination that generate model predictions consistent with experiments. We demonstrate that this coordination produces near optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While it is generally thought that amoeboid motility is robust to changes in extracellular geometry and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive forces is essential to producing robust migration.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2014.1359</identifier><identifier>PMID: 25904525</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Amoeboid Motility ; Cell Adhesion - physiology ; Cell Locomotion ; Cell Movement - physiology ; Computer Simulation ; Contractile Proteins - physiology ; Cytoplasmic Streaming ; Mechanotransduction, Cellular - physiology ; Microfluidics - methods ; Models, Biological ; Particle Image Velocimetry ; Physarum ; Physarum polycephalum ; Shear Strength - physiology ; Traction Force Microscopy</subject><ispartof>Journal of the Royal Society interface, 2015-05, Vol.12 (106), p.20141359-20141359</ispartof><rights>2015 The Author(s) Published by the Royal Society. All rights reserved.</rights><rights>2015 The Author(s) Published by the Royal Society. All rights reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-6661508e839374f9a31acbdb9a515ecb727532cad8ec1fd4d3318c8c9e2e947f3</citedby><cites>FETCH-LOGICAL-c427t-6661508e839374f9a31acbdb9a515ecb727532cad8ec1fd4d3318c8c9e2e947f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424669/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424669/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25904525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Owen L.</creatorcontrib><creatorcontrib>Zhang, Shun</creatorcontrib><creatorcontrib>Guy, Robert D.</creatorcontrib><creatorcontrib>del Álamo, Juan C.</creatorcontrib><title>Coordination of contractility, adhesion and flow in migrating Physarum amoebae</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our experiments show that flow and traction stress exhibit back-to-front-directed waves with a distinct phase difference. The model demonstrates that the direction and speed of locomotion are determined by this coordination between contraction, flow and adhesion. Using the model, we identify forms of coordination that generate model predictions consistent with experiments. We demonstrate that this coordination produces near optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While it is generally thought that amoeboid motility is robust to changes in extracellular geometry and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive forces is essential to producing robust migration.</description><subject>Amoeboid Motility</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Locomotion</subject><subject>Cell Movement - physiology</subject><subject>Computer Simulation</subject><subject>Contractile Proteins - physiology</subject><subject>Cytoplasmic Streaming</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Microfluidics - methods</subject><subject>Models, Biological</subject><subject>Particle Image Velocimetry</subject><subject>Physarum</subject><subject>Physarum polycephalum</subject><subject>Shear Strength - physiology</subject><subject>Traction Force Microscopy</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAURi0EoqWwMqKMDLTEr9hekFDFS0LAALPlOE7rKrGLnYDy70nUUsGAmGzrnnt0fT8ATmE6g6nglyHacoZSSGYQU7EHxpARNKVZhvZ3dy5G4CjGVZpihik9BCNERUooomPwNPc-FNapxnqX-DLR3jVB6cZWtukuElUsTRxKyhVJWfnPxLqktovQN7hF8rLsogptnajam1yZY3BQqiqak-05AW-3N6_z--nj893D_PpxqglizTTLMkhTbjgWmJFSKAyVzotcKAqp0TlDjGKkVcGNhmVBCowh11wLg4wgrMQTcLXxrtu8NoU2w9CVXAdbq9BJr6z8XXF2KRf-QxKCSJaJXnC-FQT_3prYyNpGbapKOePbKCGHYtgohP-jGaOccYJxj842qA4-xmDK3UQwlUNecshLDnnJwd43nP38xw7_DqgH8AYIvusX6rU1TSdXvg2uf_6l_QLmAaR4</recordid><startdate>20150506</startdate><enddate>20150506</enddate><creator>Lewis, Owen L.</creator><creator>Zhang, Shun</creator><creator>Guy, Robert D.</creator><creator>del Álamo, Juan C.</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>5PM</scope></search><sort><creationdate>20150506</creationdate><title>Coordination of contractility, adhesion and flow in migrating Physarum amoebae</title><author>Lewis, Owen L. ; Zhang, Shun ; Guy, Robert D. ; del Álamo, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-6661508e839374f9a31acbdb9a515ecb727532cad8ec1fd4d3318c8c9e2e947f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amoeboid Motility</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Locomotion</topic><topic>Cell Movement - physiology</topic><topic>Computer Simulation</topic><topic>Contractile Proteins - physiology</topic><topic>Cytoplasmic Streaming</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Microfluidics - methods</topic><topic>Models, Biological</topic><topic>Particle Image Velocimetry</topic><topic>Physarum</topic><topic>Physarum polycephalum</topic><topic>Shear Strength - physiology</topic><topic>Traction Force Microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Owen L.</creatorcontrib><creatorcontrib>Zhang, Shun</creatorcontrib><creatorcontrib>Guy, Robert D.</creatorcontrib><creatorcontrib>del Álamo, Juan C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Owen L.</au><au>Zhang, Shun</au><au>Guy, Robert D.</au><au>del Álamo, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination of contractility, adhesion and flow in migrating Physarum amoebae</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2015-05-06</date><risdate>2015</risdate><volume>12</volume><issue>106</issue><spage>20141359</spage><epage>20141359</epage><pages>20141359-20141359</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our experiments show that flow and traction stress exhibit back-to-front-directed waves with a distinct phase difference. The model demonstrates that the direction and speed of locomotion are determined by this coordination between contraction, flow and adhesion. Using the model, we identify forms of coordination that generate model predictions consistent with experiments. We demonstrate that this coordination produces near optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While it is generally thought that amoeboid motility is robust to changes in extracellular geometry and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive forces is essential to producing robust migration.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>25904525</pmid><doi>10.1098/rsif.2014.1359</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2015-05, Vol.12 (106), p.20141359-20141359
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4424669
source PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Amoeboid Motility
Cell Adhesion - physiology
Cell Locomotion
Cell Movement - physiology
Computer Simulation
Contractile Proteins - physiology
Cytoplasmic Streaming
Mechanotransduction, Cellular - physiology
Microfluidics - methods
Models, Biological
Particle Image Velocimetry
Physarum
Physarum polycephalum
Shear Strength - physiology
Traction Force Microscopy
title Coordination of contractility, adhesion and flow in migrating Physarum amoebae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20of%20contractility,%20adhesion%20and%20flow%20in%20migrating%20Physarum%20amoebae&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Lewis,%20Owen%20L.&rft.date=2015-05-06&rft.volume=12&rft.issue=106&rft.spage=20141359&rft.epage=20141359&rft.pages=20141359-20141359&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2014.1359&rft_dat=%3Cproquest_pubme%3E1819135911%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-6661508e839374f9a31acbdb9a515ecb727532cad8ec1fd4d3318c8c9e2e947f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1675878433&rft_id=info:pmid/25904525&rfr_iscdi=true