Loading…
Substrate specificities of bacterial and human AlkB proteins
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Mo...
Saved in:
Published in: | Nucleic acids research 2004, Vol.32 (11), p.3456-3461 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3 |
---|---|
cites | |
container_end_page | 3461 |
container_issue | 11 |
container_start_page | 3456 |
container_title | Nucleic acids research |
container_volume | 32 |
creator | Falnes, Pål Ø. Bjørås, Magnar Aas, Per Arne Sundheim, Ottar Seeberg, Erling |
description | Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo. |
doi_str_mv | 10.1093/nar/gkh655 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_443531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66670912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBmCrApWF9sIPqCIOHJAC_k4slcN2Vb60EkUgFfVi2c6ENZtNtnZStf8er3ZFgQsnH-aZsT0vQvsEHxOs2ElrwsnDfCaF-IBGhEmacyXpFhphhkVOMC930G6MjxgTTgT_iHaIoFRRxUbo6-1gYx9MD1lcgvO1d773ELOuzqxxPQRvmsy0VTYbFqbNxs38W7YMXQ--jZ_Qdm2aCJ835x66O_t-N7nIp9fnl5PxNHdCyj636TbAYJ0reMUslzWxRFpTMVcJbmlZljUIXhHKgSlqjOA1YGZqy0tpHdtDp-uxy8EuoHLQpgc3ehn8woR_ujNev660fqYfuj-acyYYSf2Hm_7Q_R4g9nrho4OmMS10Q9RSygIrQt-FFAvMFBbvQqLSTMVW8OANfOyG0KZlpWF4ZXiR0NEaudDFGKB-_hrBepWwTgnrdcIJf3m5jP90E2kC-Rr42MPf57oJcy0LVgh9cf9LFz-nE_Xj_kZfsSfJ5bJs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200669347</pqid></control><display><type>article</type><title>Substrate specificities of bacterial and human AlkB proteins</title><source>PubMed Central (Open access)</source><source>Oxford University Press Open Access</source><creator>Falnes, Pål Ø. ; Bjørås, Magnar ; Aas, Per Arne ; Sundheim, Ottar ; Seeberg, Erling</creator><creatorcontrib>Falnes, Pål Ø. ; Bjørås, Magnar ; Aas, Per Arne ; Sundheim, Ottar ; Seeberg, Erling</creatorcontrib><description>Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkh655</identifier><identifier>PMID: 15229293</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>AlkB Homolog 1, Histone H2a Dioxygenase ; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase ; AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase ; Dioxygenases ; DNA Methylation ; DNA Repair Enzymes ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; Escherichia coli ; Escherichia coli Proteins - metabolism ; Humans ; Magnesium - pharmacology ; Methylation ; Mixed Function Oxygenases - metabolism ; Oligodeoxyribonucleotides - chemistry ; Oligodeoxyribonucleotides - metabolism ; RNA - metabolism ; RNA, Complementary - chemistry ; RNA, Double-Stranded - metabolism ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2004, Vol.32 (11), p.3456-3461</ispartof><rights>Copyright Oxford University Press(England) 2004</rights><rights>Copyright © 2004 Oxford University Press 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC443531/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC443531/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15229293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falnes, Pål Ø.</creatorcontrib><creatorcontrib>Bjørås, Magnar</creatorcontrib><creatorcontrib>Aas, Per Arne</creatorcontrib><creatorcontrib>Sundheim, Ottar</creatorcontrib><creatorcontrib>Seeberg, Erling</creatorcontrib><title>Substrate specificities of bacterial and human AlkB proteins</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.</description><subject>AlkB Homolog 1, Histone H2a Dioxygenase</subject><subject>AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase</subject><subject>AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase</subject><subject>Dioxygenases</subject><subject>DNA Methylation</subject><subject>DNA Repair Enzymes</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Humans</subject><subject>Magnesium - pharmacology</subject><subject>Methylation</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>Oligodeoxyribonucleotides - metabolism</subject><subject>RNA - metabolism</subject><subject>RNA, Complementary - chemistry</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0U1P3DAQBmCrApWF9sIPqCIOHJAC_k4slcN2Vb60EkUgFfVi2c6ENZtNtnZStf8er3ZFgQsnH-aZsT0vQvsEHxOs2ElrwsnDfCaF-IBGhEmacyXpFhphhkVOMC930G6MjxgTTgT_iHaIoFRRxUbo6-1gYx9MD1lcgvO1d773ELOuzqxxPQRvmsy0VTYbFqbNxs38W7YMXQ--jZ_Qdm2aCJ835x66O_t-N7nIp9fnl5PxNHdCyj636TbAYJ0reMUslzWxRFpTMVcJbmlZljUIXhHKgSlqjOA1YGZqy0tpHdtDp-uxy8EuoHLQpgc3ehn8woR_ujNev660fqYfuj-acyYYSf2Hm_7Q_R4g9nrho4OmMS10Q9RSygIrQt-FFAvMFBbvQqLSTMVW8OANfOyG0KZlpWF4ZXiR0NEaudDFGKB-_hrBepWwTgnrdcIJf3m5jP90E2kC-Rr42MPf57oJcy0LVgh9cf9LFz-nE_Xj_kZfsSfJ5bJs</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Falnes, Pål Ø.</creator><creator>Bjørås, Magnar</creator><creator>Aas, Per Arne</creator><creator>Sundheim, Ottar</creator><creator>Seeberg, Erling</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Substrate specificities of bacterial and human AlkB proteins</title><author>Falnes, Pål Ø. ; Bjørås, Magnar ; Aas, Per Arne ; Sundheim, Ottar ; Seeberg, Erling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>AlkB Homolog 1, Histone H2a Dioxygenase</topic><topic>AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase</topic><topic>AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase</topic><topic>Dioxygenases</topic><topic>DNA Methylation</topic><topic>DNA Repair Enzymes</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Humans</topic><topic>Magnesium - pharmacology</topic><topic>Methylation</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>Oligodeoxyribonucleotides - metabolism</topic><topic>RNA - metabolism</topic><topic>RNA, Complementary - chemistry</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falnes, Pål Ø.</creatorcontrib><creatorcontrib>Bjørås, Magnar</creatorcontrib><creatorcontrib>Aas, Per Arne</creatorcontrib><creatorcontrib>Sundheim, Ottar</creatorcontrib><creatorcontrib>Seeberg, Erling</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falnes, Pål Ø.</au><au>Bjørås, Magnar</au><au>Aas, Per Arne</au><au>Sundheim, Ottar</au><au>Seeberg, Erling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate specificities of bacterial and human AlkB proteins</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2004</date><risdate>2004</risdate><volume>32</volume><issue>11</issue><spage>3456</spage><epage>3461</epage><pages>3456-3461</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15229293</pmid><doi>10.1093/nar/gkh655</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2004, Vol.32 (11), p.3456-3461 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_443531 |
source | PubMed Central (Open access); Oxford University Press Open Access |
subjects | AlkB Homolog 1, Histone H2a Dioxygenase AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase Dioxygenases DNA Methylation DNA Repair Enzymes DNA, Single-Stranded - metabolism DNA-Binding Proteins - metabolism Escherichia coli Escherichia coli Proteins - metabolism Humans Magnesium - pharmacology Methylation Mixed Function Oxygenases - metabolism Oligodeoxyribonucleotides - chemistry Oligodeoxyribonucleotides - metabolism RNA - metabolism RNA, Complementary - chemistry RNA, Double-Stranded - metabolism Substrate Specificity |
title | Substrate specificities of bacterial and human AlkB proteins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20specificities%20of%20bacterial%20and%20human%20AlkB%20proteins&rft.jtitle=Nucleic%20acids%20research&rft.au=Falnes,%20Pa%CC%8Al%20%C3%98.&rft.date=2004&rft.volume=32&rft.issue=11&rft.spage=3456&rft.epage=3461&rft.pages=3456-3461&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkh655&rft_dat=%3Cproquest_pubme%3E66670912%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200669347&rft_id=info:pmid/15229293&rfr_iscdi=true |