Loading…

Substrate specificities of bacterial and human AlkB proteins

Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Mo...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2004, Vol.32 (11), p.3456-3461
Main Authors: Falnes, Pål Ø., Bjørås, Magnar, Aas, Per Arne, Sundheim, Ottar, Seeberg, Erling
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3
cites
container_end_page 3461
container_issue 11
container_start_page 3456
container_title Nucleic acids research
container_volume 32
creator Falnes, Pål Ø.
Bjørås, Magnar
Aas, Per Arne
Sundheim, Ottar
Seeberg, Erling
description Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.
doi_str_mv 10.1093/nar/gkh655
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_443531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66670912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBmCrApWF9sIPqCIOHJAC_k4slcN2Vb60EkUgFfVi2c6ENZtNtnZStf8er3ZFgQsnH-aZsT0vQvsEHxOs2ElrwsnDfCaF-IBGhEmacyXpFhphhkVOMC930G6MjxgTTgT_iHaIoFRRxUbo6-1gYx9MD1lcgvO1d773ELOuzqxxPQRvmsy0VTYbFqbNxs38W7YMXQ--jZ_Qdm2aCJ835x66O_t-N7nIp9fnl5PxNHdCyj636TbAYJ0reMUslzWxRFpTMVcJbmlZljUIXhHKgSlqjOA1YGZqy0tpHdtDp-uxy8EuoHLQpgc3ehn8woR_ujNev660fqYfuj-acyYYSf2Hm_7Q_R4g9nrho4OmMS10Q9RSygIrQt-FFAvMFBbvQqLSTMVW8OANfOyG0KZlpWF4ZXiR0NEaudDFGKB-_hrBepWwTgnrdcIJf3m5jP90E2kC-Rr42MPf57oJcy0LVgh9cf9LFz-nE_Xj_kZfsSfJ5bJs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200669347</pqid></control><display><type>article</type><title>Substrate specificities of bacterial and human AlkB proteins</title><source>PubMed Central (Open access)</source><source>Oxford University Press Open Access</source><creator>Falnes, Pål Ø. ; Bjørås, Magnar ; Aas, Per Arne ; Sundheim, Ottar ; Seeberg, Erling</creator><creatorcontrib>Falnes, Pål Ø. ; Bjørås, Magnar ; Aas, Per Arne ; Sundheim, Ottar ; Seeberg, Erling</creatorcontrib><description>Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkh655</identifier><identifier>PMID: 15229293</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>AlkB Homolog 1, Histone H2a Dioxygenase ; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase ; AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase ; Dioxygenases ; DNA Methylation ; DNA Repair Enzymes ; DNA, Single-Stranded - metabolism ; DNA-Binding Proteins - metabolism ; Escherichia coli ; Escherichia coli Proteins - metabolism ; Humans ; Magnesium - pharmacology ; Methylation ; Mixed Function Oxygenases - metabolism ; Oligodeoxyribonucleotides - chemistry ; Oligodeoxyribonucleotides - metabolism ; RNA - metabolism ; RNA, Complementary - chemistry ; RNA, Double-Stranded - metabolism ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2004, Vol.32 (11), p.3456-3461</ispartof><rights>Copyright Oxford University Press(England) 2004</rights><rights>Copyright © 2004 Oxford University Press 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC443531/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC443531/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15229293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falnes, Pål Ø.</creatorcontrib><creatorcontrib>Bjørås, Magnar</creatorcontrib><creatorcontrib>Aas, Per Arne</creatorcontrib><creatorcontrib>Sundheim, Ottar</creatorcontrib><creatorcontrib>Seeberg, Erling</creatorcontrib><title>Substrate specificities of bacterial and human AlkB proteins</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.</description><subject>AlkB Homolog 1, Histone H2a Dioxygenase</subject><subject>AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase</subject><subject>AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase</subject><subject>Dioxygenases</subject><subject>DNA Methylation</subject><subject>DNA Repair Enzymes</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Humans</subject><subject>Magnesium - pharmacology</subject><subject>Methylation</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>Oligodeoxyribonucleotides - metabolism</subject><subject>RNA - metabolism</subject><subject>RNA, Complementary - chemistry</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0U1P3DAQBmCrApWF9sIPqCIOHJAC_k4slcN2Vb60EkUgFfVi2c6ENZtNtnZStf8er3ZFgQsnH-aZsT0vQvsEHxOs2ElrwsnDfCaF-IBGhEmacyXpFhphhkVOMC930G6MjxgTTgT_iHaIoFRRxUbo6-1gYx9MD1lcgvO1d773ELOuzqxxPQRvmsy0VTYbFqbNxs38W7YMXQ--jZ_Qdm2aCJ835x66O_t-N7nIp9fnl5PxNHdCyj636TbAYJ0reMUslzWxRFpTMVcJbmlZljUIXhHKgSlqjOA1YGZqy0tpHdtDp-uxy8EuoHLQpgc3ehn8woR_ujNev660fqYfuj-acyYYSf2Hm_7Q_R4g9nrho4OmMS10Q9RSygIrQt-FFAvMFBbvQqLSTMVW8OANfOyG0KZlpWF4ZXiR0NEaudDFGKB-_hrBepWwTgnrdcIJf3m5jP90E2kC-Rr42MPf57oJcy0LVgh9cf9LFz-nE_Xj_kZfsSfJ5bJs</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Falnes, Pål Ø.</creator><creator>Bjørås, Magnar</creator><creator>Aas, Per Arne</creator><creator>Sundheim, Ottar</creator><creator>Seeberg, Erling</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Substrate specificities of bacterial and human AlkB proteins</title><author>Falnes, Pål Ø. ; Bjørås, Magnar ; Aas, Per Arne ; Sundheim, Ottar ; Seeberg, Erling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>AlkB Homolog 1, Histone H2a Dioxygenase</topic><topic>AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase</topic><topic>AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase</topic><topic>Dioxygenases</topic><topic>DNA Methylation</topic><topic>DNA Repair Enzymes</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Humans</topic><topic>Magnesium - pharmacology</topic><topic>Methylation</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>Oligodeoxyribonucleotides - metabolism</topic><topic>RNA - metabolism</topic><topic>RNA, Complementary - chemistry</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falnes, Pål Ø.</creatorcontrib><creatorcontrib>Bjørås, Magnar</creatorcontrib><creatorcontrib>Aas, Per Arne</creatorcontrib><creatorcontrib>Sundheim, Ottar</creatorcontrib><creatorcontrib>Seeberg, Erling</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falnes, Pål Ø.</au><au>Bjørås, Magnar</au><au>Aas, Per Arne</au><au>Sundheim, Ottar</au><au>Seeberg, Erling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate specificities of bacterial and human AlkB proteins</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2004</date><risdate>2004</risdate><volume>32</volume><issue>11</issue><spage>3456</spage><epage>3461</epage><pages>3456-3461</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15229293</pmid><doi>10.1093/nar/gkh655</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2004, Vol.32 (11), p.3456-3461
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_443531
source PubMed Central (Open access); Oxford University Press Open Access
subjects AlkB Homolog 1, Histone H2a Dioxygenase
AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase
AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase
Dioxygenases
DNA Methylation
DNA Repair Enzymes
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - metabolism
Escherichia coli
Escherichia coli Proteins - metabolism
Humans
Magnesium - pharmacology
Methylation
Mixed Function Oxygenases - metabolism
Oligodeoxyribonucleotides - chemistry
Oligodeoxyribonucleotides - metabolism
RNA - metabolism
RNA, Complementary - chemistry
RNA, Double-Stranded - metabolism
Substrate Specificity
title Substrate specificities of bacterial and human AlkB proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20specificities%20of%20bacterial%20and%20human%20AlkB%20proteins&rft.jtitle=Nucleic%20acids%20research&rft.au=Falnes,%20Pa%CC%8Al%20%C3%98.&rft.date=2004&rft.volume=32&rft.issue=11&rft.spage=3456&rft.epage=3461&rft.pages=3456-3461&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkh655&rft_dat=%3Cproquest_pubme%3E66670912%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-b522e0ebcc74d3b46f1b16bad3cd54b2888fe54d124e392aa54fe03afb486bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200669347&rft_id=info:pmid/15229293&rfr_iscdi=true