Loading…

Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt

In the insect cuticle, structural proteins (CPs) and the polysaccharide chitin are the major components. It has been hypothesized that CPs are cross-linked to other CPs and possibly to chitin by quinones or quinone methides produced by the laccase2-mediated oxidation of N -acylcatechols. In this stu...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-05, Vol.5 (1), p.10484-10484, Article 10484
Main Authors: Mun, Seulgi, Young Noh, Mi, Dittmer, Neal T., Muthukrishnan, Subbaratnam, Kramer, Karl J., Kanost, Michael R., Arakane, Yasuyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-4df51eb8600df30ab3eeaac95bd2c4c351687aa4f10cf3ffe0e597cda2e592213
cites cdi_FETCH-LOGICAL-c438t-4df51eb8600df30ab3eeaac95bd2c4c351687aa4f10cf3ffe0e597cda2e592213
container_end_page 10484
container_issue 1
container_start_page 10484
container_title Scientific reports
container_volume 5
creator Mun, Seulgi
Young Noh, Mi
Dittmer, Neal T.
Muthukrishnan, Subbaratnam
Kramer, Karl J.
Kanost, Michael R.
Arakane, Yasuyuki
description In the insect cuticle, structural proteins (CPs) and the polysaccharide chitin are the major components. It has been hypothesized that CPs are cross-linked to other CPs and possibly to chitin by quinones or quinone methides produced by the laccase2-mediated oxidation of N -acylcatechols. In this study we investigated functions of TcCP30, the third most abundant CP in protein extracts of elytra (wing covers) from Tribolium castaneum adults. The mature TcCP30 protein has a low complexity and highly polar amino acid sequence. TcCP30 is localized with chitin in horizontal laminae and vertically oriented columnar structures in rigid cuticles, but not in soft and membranous cuticles. Immunoblot analysis revealed that TcCP30 undergoes laccase2-mediated cross-linking during cuticle maturation in vivo , a process confirmed in vitro using recombinant rTcCP30. We identified TcCPR27 and TcCPR18, the two most abundant proteins in the elytra, as putative cross-linking partners of TcCP30. RNAi for the TcCP30 gene had no effect on larval and pupal growth and development. However, during adult eclosion, ~70% of the adults were unable to shed their exuvium and died. These results support the hypothesis that TcCP30 plays an integral role as a cross-linked structural protein in the formation of lightweight rigid cuticle of the beetle.
doi_str_mv 10.1038/srep10484
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4440208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1682886626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4df51eb8600df30ab3eeaac95bd2c4c351687aa4f10cf3ffe0e597cda2e592213</originalsourceid><addsrcrecordid>eNplkc9uFSEUxonR2KZ24QsYEjdqMpV_M2U2JuamapMm3dQ1YeBML5WBEZjW-g59Z7neenNVFhwCPz4-zofQS0pOKOHyfU4wUyKkeIIOGRFtwzhjT_fWB-g45xtSR8t6Qfvn6IC1fS8YF4foYbUUZxavE55TLOACvnNljTX28Q6bOM0efrhyjzN8XyAYwAPUXcjYpJhz4134BhbbJblwjV3IYAo2G00PONepirqfurgYsA4Wu4xTVXKpXhpjwmUNWNvFFzxFX16gZ6P2GY4f6xH6-unsavWlubj8fL76eNEYwWVphB1bCoPsCLEjJ3rgAFqbvh0sM8LwlnbyVGsxUmJGPo5AoO1PjdWsVsYoP0IftrrzMkxgDYSStFdzcpNO9ypqp_4-CW6truOtEkIQRmQVePMokGLtSy5qctmA9zpAXLKqBpiUXce6ir7-B72JSwr1e4rKvm87Iimv1Nst9butCcadGUrUJme1y7myr_bd78g_qVbg3RbI8yYWSHtP_qf2C7iAtpI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899560813</pqid></control><display><type>article</type><title>Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mun, Seulgi ; Young Noh, Mi ; Dittmer, Neal T. ; Muthukrishnan, Subbaratnam ; Kramer, Karl J. ; Kanost, Michael R. ; Arakane, Yasuyuki</creator><creatorcontrib>Mun, Seulgi ; Young Noh, Mi ; Dittmer, Neal T. ; Muthukrishnan, Subbaratnam ; Kramer, Karl J. ; Kanost, Michael R. ; Arakane, Yasuyuki</creatorcontrib><description>In the insect cuticle, structural proteins (CPs) and the polysaccharide chitin are the major components. It has been hypothesized that CPs are cross-linked to other CPs and possibly to chitin by quinones or quinone methides produced by the laccase2-mediated oxidation of N -acylcatechols. In this study we investigated functions of TcCP30, the third most abundant CP in protein extracts of elytra (wing covers) from Tribolium castaneum adults. The mature TcCP30 protein has a low complexity and highly polar amino acid sequence. TcCP30 is localized with chitin in horizontal laminae and vertically oriented columnar structures in rigid cuticles, but not in soft and membranous cuticles. Immunoblot analysis revealed that TcCP30 undergoes laccase2-mediated cross-linking during cuticle maturation in vivo , a process confirmed in vitro using recombinant rTcCP30. We identified TcCPR27 and TcCPR18, the two most abundant proteins in the elytra, as putative cross-linking partners of TcCP30. RNAi for the TcCP30 gene had no effect on larval and pupal growth and development. However, during adult eclosion, ~70% of the adults were unable to shed their exuvium and died. These results support the hypothesis that TcCP30 plays an integral role as a cross-linked structural protein in the formation of lightweight rigid cuticle of the beetle.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep10484</identifier><identifier>PMID: 25994234</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 38 ; 38/1 ; 38/39 ; 38/89 ; 631/136/1660/1646 ; 631/337/505 ; 64/116 ; Adults ; Amino Acid Sequence ; Amino acids ; Animals ; Base Sequence ; Chitin ; Chitin - metabolism ; Eclosion ; Elytra ; Epicuticle ; Humanities and Social Sciences ; Insect Hormones - metabolism ; Insect Proteins - antagonists &amp; inhibitors ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insects ; Laccase - metabolism ; Larva - growth &amp; development ; Larva - metabolism ; Maturation ; Microscopy, Electron, Transmission ; Molecular Sequence Data ; Molting ; multidisciplinary ; Oxidation ; Phenotype ; Proteins ; Pupa - growth &amp; development ; Pupa - metabolism ; Quinones ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; RNA Interference ; RNA, Double-Stranded - metabolism ; RNA-mediated interference ; Science ; Sclerotization ; Structural proteins ; Tribolium - growth &amp; development ; Tribolium - metabolism ; Wings, Animal - metabolism ; Wings, Animal - ultrastructure</subject><ispartof>Scientific reports, 2015-05, Vol.5 (1), p.10484-10484, Article 10484</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group May 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4df51eb8600df30ab3eeaac95bd2c4c351687aa4f10cf3ffe0e597cda2e592213</citedby><cites>FETCH-LOGICAL-c438t-4df51eb8600df30ab3eeaac95bd2c4c351687aa4f10cf3ffe0e597cda2e592213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899560813/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899560813?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25994234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mun, Seulgi</creatorcontrib><creatorcontrib>Young Noh, Mi</creatorcontrib><creatorcontrib>Dittmer, Neal T.</creatorcontrib><creatorcontrib>Muthukrishnan, Subbaratnam</creatorcontrib><creatorcontrib>Kramer, Karl J.</creatorcontrib><creatorcontrib>Kanost, Michael R.</creatorcontrib><creatorcontrib>Arakane, Yasuyuki</creatorcontrib><title>Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In the insect cuticle, structural proteins (CPs) and the polysaccharide chitin are the major components. It has been hypothesized that CPs are cross-linked to other CPs and possibly to chitin by quinones or quinone methides produced by the laccase2-mediated oxidation of N -acylcatechols. In this study we investigated functions of TcCP30, the third most abundant CP in protein extracts of elytra (wing covers) from Tribolium castaneum adults. The mature TcCP30 protein has a low complexity and highly polar amino acid sequence. TcCP30 is localized with chitin in horizontal laminae and vertically oriented columnar structures in rigid cuticles, but not in soft and membranous cuticles. Immunoblot analysis revealed that TcCP30 undergoes laccase2-mediated cross-linking during cuticle maturation in vivo , a process confirmed in vitro using recombinant rTcCP30. We identified TcCPR27 and TcCPR18, the two most abundant proteins in the elytra, as putative cross-linking partners of TcCP30. RNAi for the TcCP30 gene had no effect on larval and pupal growth and development. However, during adult eclosion, ~70% of the adults were unable to shed their exuvium and died. These results support the hypothesis that TcCP30 plays an integral role as a cross-linked structural protein in the formation of lightweight rigid cuticle of the beetle.</description><subject>14/19</subject><subject>38</subject><subject>38/1</subject><subject>38/39</subject><subject>38/89</subject><subject>631/136/1660/1646</subject><subject>631/337/505</subject><subject>64/116</subject><subject>Adults</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Chitin</subject><subject>Chitin - metabolism</subject><subject>Eclosion</subject><subject>Elytra</subject><subject>Epicuticle</subject><subject>Humanities and Social Sciences</subject><subject>Insect Hormones - metabolism</subject><subject>Insect Proteins - antagonists &amp; inhibitors</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insects</subject><subject>Laccase - metabolism</subject><subject>Larva - growth &amp; development</subject><subject>Larva - metabolism</subject><subject>Maturation</subject><subject>Microscopy, Electron, Transmission</subject><subject>Molecular Sequence Data</subject><subject>Molting</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Phenotype</subject><subject>Proteins</subject><subject>Pupa - growth &amp; development</subject><subject>Pupa - metabolism</subject><subject>Quinones</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>RNA Interference</subject><subject>RNA, Double-Stranded - metabolism</subject><subject>RNA-mediated interference</subject><subject>Science</subject><subject>Sclerotization</subject><subject>Structural proteins</subject><subject>Tribolium - growth &amp; development</subject><subject>Tribolium - metabolism</subject><subject>Wings, Animal - metabolism</subject><subject>Wings, Animal - ultrastructure</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc9uFSEUxonR2KZ24QsYEjdqMpV_M2U2JuamapMm3dQ1YeBML5WBEZjW-g59Z7neenNVFhwCPz4-zofQS0pOKOHyfU4wUyKkeIIOGRFtwzhjT_fWB-g45xtSR8t6Qfvn6IC1fS8YF4foYbUUZxavE55TLOACvnNljTX28Q6bOM0efrhyjzN8XyAYwAPUXcjYpJhz4134BhbbJblwjV3IYAo2G00PONepirqfurgYsA4Wu4xTVXKpXhpjwmUNWNvFFzxFX16gZ6P2GY4f6xH6-unsavWlubj8fL76eNEYwWVphB1bCoPsCLEjJ3rgAFqbvh0sM8LwlnbyVGsxUmJGPo5AoO1PjdWsVsYoP0IftrrzMkxgDYSStFdzcpNO9ypqp_4-CW6truOtEkIQRmQVePMokGLtSy5qctmA9zpAXLKqBpiUXce6ir7-B72JSwr1e4rKvm87Iimv1Nst9butCcadGUrUJme1y7myr_bd78g_qVbg3RbI8yYWSHtP_qf2C7iAtpI</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Mun, Seulgi</creator><creator>Young Noh, Mi</creator><creator>Dittmer, Neal T.</creator><creator>Muthukrishnan, Subbaratnam</creator><creator>Kramer, Karl J.</creator><creator>Kanost, Michael R.</creator><creator>Arakane, Yasuyuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150521</creationdate><title>Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt</title><author>Mun, Seulgi ; Young Noh, Mi ; Dittmer, Neal T. ; Muthukrishnan, Subbaratnam ; Kramer, Karl J. ; Kanost, Michael R. ; Arakane, Yasuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4df51eb8600df30ab3eeaac95bd2c4c351687aa4f10cf3ffe0e597cda2e592213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/19</topic><topic>38</topic><topic>38/1</topic><topic>38/39</topic><topic>38/89</topic><topic>631/136/1660/1646</topic><topic>631/337/505</topic><topic>64/116</topic><topic>Adults</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Chitin</topic><topic>Chitin - metabolism</topic><topic>Eclosion</topic><topic>Elytra</topic><topic>Epicuticle</topic><topic>Humanities and Social Sciences</topic><topic>Insect Hormones - metabolism</topic><topic>Insect Proteins - antagonists &amp; inhibitors</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insects</topic><topic>Laccase - metabolism</topic><topic>Larva - growth &amp; development</topic><topic>Larva - metabolism</topic><topic>Maturation</topic><topic>Microscopy, Electron, Transmission</topic><topic>Molecular Sequence Data</topic><topic>Molting</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Phenotype</topic><topic>Proteins</topic><topic>Pupa - growth &amp; development</topic><topic>Pupa - metabolism</topic><topic>Quinones</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>RNA Interference</topic><topic>RNA, Double-Stranded - metabolism</topic><topic>RNA-mediated interference</topic><topic>Science</topic><topic>Sclerotization</topic><topic>Structural proteins</topic><topic>Tribolium - growth &amp; development</topic><topic>Tribolium - metabolism</topic><topic>Wings, Animal - metabolism</topic><topic>Wings, Animal - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mun, Seulgi</creatorcontrib><creatorcontrib>Young Noh, Mi</creatorcontrib><creatorcontrib>Dittmer, Neal T.</creatorcontrib><creatorcontrib>Muthukrishnan, Subbaratnam</creatorcontrib><creatorcontrib>Kramer, Karl J.</creatorcontrib><creatorcontrib>Kanost, Michael R.</creatorcontrib><creatorcontrib>Arakane, Yasuyuki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mun, Seulgi</au><au>Young Noh, Mi</au><au>Dittmer, Neal T.</au><au>Muthukrishnan, Subbaratnam</au><au>Kramer, Karl J.</au><au>Kanost, Michael R.</au><au>Arakane, Yasuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>10484</spage><epage>10484</epage><pages>10484-10484</pages><artnum>10484</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In the insect cuticle, structural proteins (CPs) and the polysaccharide chitin are the major components. It has been hypothesized that CPs are cross-linked to other CPs and possibly to chitin by quinones or quinone methides produced by the laccase2-mediated oxidation of N -acylcatechols. In this study we investigated functions of TcCP30, the third most abundant CP in protein extracts of elytra (wing covers) from Tribolium castaneum adults. The mature TcCP30 protein has a low complexity and highly polar amino acid sequence. TcCP30 is localized with chitin in horizontal laminae and vertically oriented columnar structures in rigid cuticles, but not in soft and membranous cuticles. Immunoblot analysis revealed that TcCP30 undergoes laccase2-mediated cross-linking during cuticle maturation in vivo , a process confirmed in vitro using recombinant rTcCP30. We identified TcCPR27 and TcCPR18, the two most abundant proteins in the elytra, as putative cross-linking partners of TcCP30. RNAi for the TcCP30 gene had no effect on larval and pupal growth and development. However, during adult eclosion, ~70% of the adults were unable to shed their exuvium and died. These results support the hypothesis that TcCP30 plays an integral role as a cross-linked structural protein in the formation of lightweight rigid cuticle of the beetle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25994234</pmid><doi>10.1038/srep10484</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-05, Vol.5 (1), p.10484-10484, Article 10484
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4440208
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/19
38
38/1
38/39
38/89
631/136/1660/1646
631/337/505
64/116
Adults
Amino Acid Sequence
Amino acids
Animals
Base Sequence
Chitin
Chitin - metabolism
Eclosion
Elytra
Epicuticle
Humanities and Social Sciences
Insect Hormones - metabolism
Insect Proteins - antagonists & inhibitors
Insect Proteins - genetics
Insect Proteins - metabolism
Insects
Laccase - metabolism
Larva - growth & development
Larva - metabolism
Maturation
Microscopy, Electron, Transmission
Molecular Sequence Data
Molting
multidisciplinary
Oxidation
Phenotype
Proteins
Pupa - growth & development
Pupa - metabolism
Quinones
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
RNA Interference
RNA, Double-Stranded - metabolism
RNA-mediated interference
Science
Sclerotization
Structural proteins
Tribolium - growth & development
Tribolium - metabolism
Wings, Animal - metabolism
Wings, Animal - ultrastructure
title Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cuticular%20protein%20with%20a%20low%20complexity%20sequence%20becomes%20cross-linked%20during%20insect%20cuticle%20sclerotization%20and%20is%20required%20for%20the%20adult%20molt&rft.jtitle=Scientific%20reports&rft.au=Mun,%20Seulgi&rft.date=2015-05-21&rft.volume=5&rft.issue=1&rft.spage=10484&rft.epage=10484&rft.pages=10484-10484&rft.artnum=10484&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep10484&rft_dat=%3Cproquest_pubme%3E1682886626%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-4df51eb8600df30ab3eeaac95bd2c4c351687aa4f10cf3ffe0e597cda2e592213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899560813&rft_id=info:pmid/25994234&rfr_iscdi=true