Loading…
Sterol Carrier Protein-2: Binding Protein for Endocannabinoids
The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also...
Saved in:
Published in: | Molecular neurobiology 2014-08, Vol.50 (1), p.149-158 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-c46e391ac80037478c2ac2c27858227d59a15e6998eccbb2f2adeb8e8fe4db533 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-c46e391ac80037478c2ac2c27858227d59a15e6998eccbb2f2adeb8e8fe4db533 |
container_end_page | 158 |
container_issue | 1 |
container_start_page | 149 |
container_title | Molecular neurobiology |
container_volume | 50 |
creator | Liedhegner, Elizabeth Sabens Vogt, Caleb D. Sem, Daniel S. Cunningham, Christopher W. Hillard, Cecilia J. |
description | The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs,
N
-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ∆G values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. |
doi_str_mv | 10.1007/s12035-014-8651-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618155273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-c46e391ac80037478c2ac2c27858227d59a15e6998eccbb2f2adeb8e8fe4db533</originalsourceid><addsrcrecordid>eNp1kVFLHDEQx0Op1Kv2A_SlLPTFl9TMZLPJ9kHQw1pBaMH2OWSzs9fIXmKTPcFv7x6nYgs-BTK_-U8mP8Y-gvgCQujjAiik4gJqbhoFXL9hC1Cq5QAG37KFMK3kuqnNPntfyo0QiCD0O7aPtQIhQS7YyfVEOY3V0uUcKFc_c5ooRI5fq7MQ-xBXT1fVkHJ1HvvkXYyuCzGFvhyyvcGNhT48ngfs97fzX8vv_OrHxeXy9Ip7peXEfd2QbMF5I4TUtTYenUeP2iiDqHvVOlDUtK0h77sOB3Q9dYbMQHXfKSkP2Mku93bTran3FKfsRnubw9rle5tcsP9WYvhjV-nO1rUSqMwccPQYkNPfDZXJrkPxNI4uUtoUCw2Y-etQb2d9_g-9SZsc5_UsqKZRLQA2MwU7yudUSqbh-TEg7NaO3dmxsx27tWP13PPp5RbPHU86ZgB3QJlLcUX5xehXUx8ADkKZ9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566591126</pqid></control><display><type>article</type><title>Sterol Carrier Protein-2: Binding Protein for Endocannabinoids</title><source>Springer Nature</source><creator>Liedhegner, Elizabeth Sabens ; Vogt, Caleb D. ; Sem, Daniel S. ; Cunningham, Christopher W. ; Hillard, Cecilia J.</creator><creatorcontrib>Liedhegner, Elizabeth Sabens ; Vogt, Caleb D. ; Sem, Daniel S. ; Cunningham, Christopher W. ; Hillard, Cecilia J.</creatorcontrib><description>The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs,
N
-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ∆G values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-014-8651-7</identifier><identifier>PMID: 24510313</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Arachidonic Acids - metabolism ; Binding sites ; Biomedical and Life Sciences ; Biomedicine ; Carrier Proteins - metabolism ; Cell Biology ; Cholesterol ; Cholesterol - metabolism ; Endocannabinoids - metabolism ; HEK293 Cells ; Humans ; Ligands ; Lipids ; Neurobiology ; Neurology ; Neurons - metabolism ; Neurosciences ; Protein Binding ; Proteins ; Signal Transduction</subject><ispartof>Molecular neurobiology, 2014-08, Vol.50 (1), p.149-158</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-c46e391ac80037478c2ac2c27858227d59a15e6998eccbb2f2adeb8e8fe4db533</citedby><cites>FETCH-LOGICAL-c573t-c46e391ac80037478c2ac2c27858227d59a15e6998eccbb2f2adeb8e8fe4db533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24510313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liedhegner, Elizabeth Sabens</creatorcontrib><creatorcontrib>Vogt, Caleb D.</creatorcontrib><creatorcontrib>Sem, Daniel S.</creatorcontrib><creatorcontrib>Cunningham, Christopher W.</creatorcontrib><creatorcontrib>Hillard, Cecilia J.</creatorcontrib><title>Sterol Carrier Protein-2: Binding Protein for Endocannabinoids</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs,
N
-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ∆G values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.</description><subject>Arachidonic Acids - metabolism</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Endocannabinoids - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Ligands</subject><subject>Lipids</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Signal Transduction</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kVFLHDEQx0Op1Kv2A_SlLPTFl9TMZLPJ9kHQw1pBaMH2OWSzs9fIXmKTPcFv7x6nYgs-BTK_-U8mP8Y-gvgCQujjAiik4gJqbhoFXL9hC1Cq5QAG37KFMK3kuqnNPntfyo0QiCD0O7aPtQIhQS7YyfVEOY3V0uUcKFc_c5ooRI5fq7MQ-xBXT1fVkHJ1HvvkXYyuCzGFvhyyvcGNhT48ngfs97fzX8vv_OrHxeXy9Ip7peXEfd2QbMF5I4TUtTYenUeP2iiDqHvVOlDUtK0h77sOB3Q9dYbMQHXfKSkP2Mku93bTran3FKfsRnubw9rle5tcsP9WYvhjV-nO1rUSqMwccPQYkNPfDZXJrkPxNI4uUtoUCw2Y-etQb2d9_g-9SZsc5_UsqKZRLQA2MwU7yudUSqbh-TEg7NaO3dmxsx27tWP13PPp5RbPHU86ZgB3QJlLcUX5xehXUx8ADkKZ9g</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Liedhegner, Elizabeth Sabens</creator><creator>Vogt, Caleb D.</creator><creator>Sem, Daniel S.</creator><creator>Cunningham, Christopher W.</creator><creator>Hillard, Cecilia J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Sterol Carrier Protein-2: Binding Protein for Endocannabinoids</title><author>Liedhegner, Elizabeth Sabens ; Vogt, Caleb D. ; Sem, Daniel S. ; Cunningham, Christopher W. ; Hillard, Cecilia J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-c46e391ac80037478c2ac2c27858227d59a15e6998eccbb2f2adeb8e8fe4db533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arachidonic Acids - metabolism</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Endocannabinoids - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Ligands</topic><topic>Lipids</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liedhegner, Elizabeth Sabens</creatorcontrib><creatorcontrib>Vogt, Caleb D.</creatorcontrib><creatorcontrib>Sem, Daniel S.</creatorcontrib><creatorcontrib>Cunningham, Christopher W.</creatorcontrib><creatorcontrib>Hillard, Cecilia J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liedhegner, Elizabeth Sabens</au><au>Vogt, Caleb D.</au><au>Sem, Daniel S.</au><au>Cunningham, Christopher W.</au><au>Hillard, Cecilia J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sterol Carrier Protein-2: Binding Protein for Endocannabinoids</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>50</volume><issue>1</issue><spage>149</spage><epage>158</epage><pages>149-158</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs,
N
-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ∆G values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24510313</pmid><doi>10.1007/s12035-014-8651-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2014-08, Vol.50 (1), p.149-158 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4450258 |
source | Springer Nature |
subjects | Arachidonic Acids - metabolism Binding sites Biomedical and Life Sciences Biomedicine Carrier Proteins - metabolism Cell Biology Cholesterol Cholesterol - metabolism Endocannabinoids - metabolism HEK293 Cells Humans Ligands Lipids Neurobiology Neurology Neurons - metabolism Neurosciences Protein Binding Proteins Signal Transduction |
title | Sterol Carrier Protein-2: Binding Protein for Endocannabinoids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sterol%20Carrier%20Protein-2:%20Binding%20Protein%20for%20Endocannabinoids&rft.jtitle=Molecular%20neurobiology&rft.au=Liedhegner,%20Elizabeth%20Sabens&rft.date=2014-08-01&rft.volume=50&rft.issue=1&rft.spage=149&rft.epage=158&rft.pages=149-158&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-014-8651-7&rft_dat=%3Cproquest_pubme%3E1618155273%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-c46e391ac80037478c2ac2c27858227d59a15e6998eccbb2f2adeb8e8fe4db533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566591126&rft_id=info:pmid/24510313&rfr_iscdi=true |