Loading…
Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review
Type 1 diabetes (T1D) is an autoimmune disease with a prolonged and variable latent period that culminates in the destruction of pancreatic β-cells and the development of hyperglycemia. There is a need for diagnostic biomarkers to detect more accurately individuals with prediabetes to expedite targe...
Saved in:
Published in: | Translational research : the journal of laboratory and clinical medicine 2014-08, Vol.164 (2), p.110-121 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Type 1 diabetes (T1D) is an autoimmune disease with a prolonged and variable latent period that culminates in the destruction of pancreatic β-cells and the development of hyperglycemia. There is a need for diagnostic biomarkers to detect more accurately individuals with prediabetes to expedite targeting for prevention and intervention strategies. To assess the current ability to predict the insidious development of T1D, we conducted a comprehensive systematic review for established and prospective predictive markers of T1D using the Medline, OVID, and EMBASE databases. Resulting citations were screened for relevance to subject. Our research generated five major categories of markers that are either currently used or forthcoming: genetic, autoantibody, risk score quantification, cellular immunity, and β-cell function. The current standard used to assess T1D onset or predisposition focuses on autoimmune pathology and disease-associated autoantibodies. Research studies in general go beyond autoantibody screening and assess genetic predisposition, and quantitate risk of developing disease based on additional factors. However, there are few currently used techniques that assess the root of T1D: β-cell destruction. Thus, novel techniques are discussed with the potential to gauge degrees of β-cell stress and failure via protein, RNA, and DNA analyses. |
---|---|
ISSN: | 1931-5244 1878-1810 |
DOI: | 10.1016/j.trsl.2014.02.004 |