Loading…

Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii

The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cy...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2015-06, Vol.168 (2), p.648-658
Main Authors: Godaux, Damien, Bailleul, Benjamin, Berne, Nicolas, Cardol, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-a0a8239668af3b64be39778fe935fbcecf599d3b1bb3525805e9e7223295022c3
cites
container_end_page 658
container_issue 2
container_start_page 648
container_title Plant physiology (Bethesda)
container_volume 168
creator Godaux, Damien
Bailleul, Benjamin
Berne, Nicolas
Cardol, Pierre
description The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.
doi_str_mv 10.1104/pp.15.00105
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4453779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685763257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-a0a8239668af3b64be39778fe935fbcecf599d3b1bb3525805e9e7223295022c3</originalsourceid><addsrcrecordid>eNpVkkuP0zAUhSMEYoaBFXvkJdIoxY84iTdIVTUvqYgRgrXlODetwbWD7ZTJ_-IH4rbDCFa-8j3nO77WLYq3BC8IwdWHcVwQvsCYYP6sOCec0ZLyqn1enGOca9y24qx4FeN3nDWMVC-LM8oFI5yS8-L3nesnnYx3yA_ofuuTj7NLW0hGo5UKXW5cmwd1VBiHls4_GIW-gDUQUb67nfvgN-BUBLTMoL1JM1KuR_chs1x5E1RvwKVs2Uz2yCnX5geQ8hP0RiXo0WrWNqddWdApHPKs_3XIWm2t2s293_lMRwGM26rQJ2NeFy8GZSO8eTwvim_XV19Xt-X6883darkudSVIKhVWLWWirls1sK6uOmCiadoBBONDp0EPXIiedaTrGKe8xRwENJQyKjimVLOL4uOJO07dDnqdxwjKyjGYnQqz9MrI_zvObOXG72VVcdY0IgPYCZB_awPSh87IPT0aj_VkN1Jp2YGktG4laWkr6ux6_xgb_M8JYpI7EzVYqxz4KUpSt7ypGeVNll6epDr4GAMMT48jWB62Q46jJFwetyOr3_07z5P27zqwPxqZubU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685763257</pqid></control><display><type>article</type><title>Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii</title><source>Oxford Journals Online</source><source>JSTOR Archival Journals</source><creator>Godaux, Damien ; Bailleul, Benjamin ; Berne, Nicolas ; Cardol, Pierre</creator><creatorcontrib>Godaux, Damien ; Bailleul, Benjamin ; Berne, Nicolas ; Cardol, Pierre</creatorcontrib><description>The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.15.00105</identifier><identifier>PMID: 25931521</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Anaerobiosis - radiation effects ; Biochemistry, biophysics &amp; molecular biology ; Biochimie, biophysique &amp; biologie moléculaire ; Biologie végétale (sciences végétales, sylviculture, mycologie...) ; Carbon Cycle - radiation effects ; Cell Survival - radiation effects ; chlamydomonas ; Chlamydomonas reinhardtii - cytology ; Chlamydomonas reinhardtii - growth &amp; development ; Chlamydomonas reinhardtii - physiology ; Chlamydomonas reinhardtii - radiation effects ; cyclic electron flow ; Electron Transport - radiation effects ; Ferredoxin-NADP Reductase - metabolism ; Hydrogen - metabolism ; hydrogenase ; Hydrogenase - metabolism ; Life sciences ; Light ; Models, Biological ; Photosynthesis - radiation effects ; Photosystem I Protein Complex - metabolism ; Photosystem II Protein Complex - metabolism ; Phytobiology (plant sciences, forestry, mycology...) ; Plant Proteins - metabolism ; Protons ; Sciences du vivant ; Starch - metabolism</subject><ispartof>Plant physiology (Bethesda), 2015-06, Vol.168 (2), p.648-658</ispartof><rights>2015 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2015 American Society of Plant Biologists. All Rights Reserved. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-a0a8239668af3b64be39778fe935fbcecf599d3b1bb3525805e9e7223295022c3</citedby><orcidid>0000-0001-9799-0546 ; 0000-0002-8699-0927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25931521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Godaux, Damien</creatorcontrib><creatorcontrib>Bailleul, Benjamin</creatorcontrib><creatorcontrib>Berne, Nicolas</creatorcontrib><creatorcontrib>Cardol, Pierre</creatorcontrib><title>Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.</description><subject>Anaerobiosis - radiation effects</subject><subject>Biochemistry, biophysics &amp; molecular biology</subject><subject>Biochimie, biophysique &amp; biologie moléculaire</subject><subject>Biologie végétale (sciences végétales, sylviculture, mycologie...)</subject><subject>Carbon Cycle - radiation effects</subject><subject>Cell Survival - radiation effects</subject><subject>chlamydomonas</subject><subject>Chlamydomonas reinhardtii - cytology</subject><subject>Chlamydomonas reinhardtii - growth &amp; development</subject><subject>Chlamydomonas reinhardtii - physiology</subject><subject>Chlamydomonas reinhardtii - radiation effects</subject><subject>cyclic electron flow</subject><subject>Electron Transport - radiation effects</subject><subject>Ferredoxin-NADP Reductase - metabolism</subject><subject>Hydrogen - metabolism</subject><subject>hydrogenase</subject><subject>Hydrogenase - metabolism</subject><subject>Life sciences</subject><subject>Light</subject><subject>Models, Biological</subject><subject>Photosynthesis - radiation effects</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Phytobiology (plant sciences, forestry, mycology...)</subject><subject>Plant Proteins - metabolism</subject><subject>Protons</subject><subject>Sciences du vivant</subject><subject>Starch - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkkuP0zAUhSMEYoaBFXvkJdIoxY84iTdIVTUvqYgRgrXlODetwbWD7ZTJ_-IH4rbDCFa-8j3nO77WLYq3BC8IwdWHcVwQvsCYYP6sOCec0ZLyqn1enGOca9y24qx4FeN3nDWMVC-LM8oFI5yS8-L3nesnnYx3yA_ofuuTj7NLW0hGo5UKXW5cmwd1VBiHls4_GIW-gDUQUb67nfvgN-BUBLTMoL1JM1KuR_chs1x5E1RvwKVs2Uz2yCnX5geQ8hP0RiXo0WrWNqddWdApHPKs_3XIWm2t2s293_lMRwGM26rQJ2NeFy8GZSO8eTwvim_XV19Xt-X6883darkudSVIKhVWLWWirls1sK6uOmCiadoBBONDp0EPXIiedaTrGKe8xRwENJQyKjimVLOL4uOJO07dDnqdxwjKyjGYnQqz9MrI_zvObOXG72VVcdY0IgPYCZB_awPSh87IPT0aj_VkN1Jp2YGktG4laWkr6ux6_xgb_M8JYpI7EzVYqxz4KUpSt7ypGeVNll6epDr4GAMMT48jWB62Q46jJFwetyOr3_07z5P27zqwPxqZubU</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Godaux, Damien</creator><creator>Bailleul, Benjamin</creator><creator>Berne, Nicolas</creator><creator>Cardol, Pierre</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9799-0546</orcidid><orcidid>https://orcid.org/0000-0002-8699-0927</orcidid></search><sort><creationdate>20150601</creationdate><title>Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii</title><author>Godaux, Damien ; Bailleul, Benjamin ; Berne, Nicolas ; Cardol, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-a0a8239668af3b64be39778fe935fbcecf599d3b1bb3525805e9e7223295022c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anaerobiosis - radiation effects</topic><topic>Biochemistry, biophysics &amp; molecular biology</topic><topic>Biochimie, biophysique &amp; biologie moléculaire</topic><topic>Biologie végétale (sciences végétales, sylviculture, mycologie...)</topic><topic>Carbon Cycle - radiation effects</topic><topic>Cell Survival - radiation effects</topic><topic>chlamydomonas</topic><topic>Chlamydomonas reinhardtii - cytology</topic><topic>Chlamydomonas reinhardtii - growth &amp; development</topic><topic>Chlamydomonas reinhardtii - physiology</topic><topic>Chlamydomonas reinhardtii - radiation effects</topic><topic>cyclic electron flow</topic><topic>Electron Transport - radiation effects</topic><topic>Ferredoxin-NADP Reductase - metabolism</topic><topic>Hydrogen - metabolism</topic><topic>hydrogenase</topic><topic>Hydrogenase - metabolism</topic><topic>Life sciences</topic><topic>Light</topic><topic>Models, Biological</topic><topic>Photosynthesis - radiation effects</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Phytobiology (plant sciences, forestry, mycology...)</topic><topic>Plant Proteins - metabolism</topic><topic>Protons</topic><topic>Sciences du vivant</topic><topic>Starch - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godaux, Damien</creatorcontrib><creatorcontrib>Bailleul, Benjamin</creatorcontrib><creatorcontrib>Berne, Nicolas</creatorcontrib><creatorcontrib>Cardol, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godaux, Damien</au><au>Bailleul, Benjamin</au><au>Berne, Nicolas</au><au>Cardol, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>168</volume><issue>2</issue><spage>648</spage><epage>658</epage><pages>648-658</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>25931521</pmid><doi>10.1104/pp.15.00105</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9799-0546</orcidid><orcidid>https://orcid.org/0000-0002-8699-0927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2015-06, Vol.168 (2), p.648-658
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4453779
source Oxford Journals Online; JSTOR Archival Journals
subjects Anaerobiosis - radiation effects
Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
Biologie végétale (sciences végétales, sylviculture, mycologie...)
Carbon Cycle - radiation effects
Cell Survival - radiation effects
chlamydomonas
Chlamydomonas reinhardtii - cytology
Chlamydomonas reinhardtii - growth & development
Chlamydomonas reinhardtii - physiology
Chlamydomonas reinhardtii - radiation effects
cyclic electron flow
Electron Transport - radiation effects
Ferredoxin-NADP Reductase - metabolism
Hydrogen - metabolism
hydrogenase
Hydrogenase - metabolism
Life sciences
Light
Models, Biological
Photosynthesis - radiation effects
Photosystem I Protein Complex - metabolism
Photosystem II Protein Complex - metabolism
Phytobiology (plant sciences, forestry, mycology...)
Plant Proteins - metabolism
Protons
Sciences du vivant
Starch - metabolism
title Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20Photosynthetic%20Carbon%20Fixation%20in%20Anoxia%20Relies%20on%20Hydrogenase%20Activity%20and%20Proton-Gradient%20Regulation-Like1-Mediated%20Cyclic%20Electron%20Flow%20in%20Chlamydomonas%20reinhardtii&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Godaux,%20Damien&rft.date=2015-06-01&rft.volume=168&rft.issue=2&rft.spage=648&rft.epage=658&rft.pages=648-658&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.15.00105&rft_dat=%3Cproquest_pubme%3E1685763257%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-a0a8239668af3b64be39778fe935fbcecf599d3b1bb3525805e9e7223295022c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685763257&rft_id=info:pmid/25931521&rfr_iscdi=true