Loading…

Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

ABSTRACT Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero‐trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that s...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2015-06, Vol.29 (6), p.2583-2594
Main Authors: Widdows, Kate L., Panitchob, Nuttanont, Crocker, Ian P., Please, Colin P., Hanson, Mark A., Sibley, Colin P., Johnstone, Edward D., Sengers, Bram G., Lewis, Rohan M., Glazier, Jocelyn D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4663-61db98b18c583035706a5867aff71b0ee34cbc08b5034bcf970650537d0c0f6a3
cites cdi_FETCH-LOGICAL-c4663-61db98b18c583035706a5867aff71b0ee34cbc08b5034bcf970650537d0c0f6a3
container_end_page 2594
container_issue 6
container_start_page 2583
container_title The FASEB journal
container_volume 29
creator Widdows, Kate L.
Panitchob, Nuttanont
Crocker, Ian P.
Please, Colin P.
Hanson, Mark A.
Sibley, Colin P.
Johnstone, Edward D.
Sengers, Bram G.
Lewis, Rohan M.
Glazier, Jocelyn D.
description ABSTRACT Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero‐trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l‐serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l‐serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l‐serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero‐trans uptake. Both L‐type amino acid transporter (LAT) 1 and LAT2 subtypes of system L were distributed to MVM, with L‐serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. FASEB J. 29, 2583‐2594 (2015). www.fasebj.org
doi_str_mv 10.1096/fj.14-267773
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4469330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685751517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4663-61db98b18c583035706a5867aff71b0ee34cbc08b5034bcf970650537d0c0f6a3</originalsourceid><addsrcrecordid>eNqFkU2PFCEQhonRuOPozbPh6MFei6b56IuJbhxds4kH9Uxomu5h0sDY0DvuP_BnyzrjZr3opSioh5cqXoSeEzgn0PLXw-6cNFXNhRD0AVoRRqHiksNDtALZ1hXnVJ6hJyntAIAA4Y_RWc0EJ5SzFfp5GbIdZ51dDDgO2ES_X_LvrZ6wj72dXBjxweUt9tZ3sw4W5xLTPs4Zp7z0ziY822urp4SDPWAXkhu3OZUkR6y9CyUa12P7w2x1GO_f9_b2yCWfnqJHQ1Gwz07rGn3bvP968bG6-vzh8uLtVWWaMknFSd-1siPSMEmBMgFcM8mFHgZBOrCWNqYzIDsGtOnM0BaAAaOiBwMD13SN3hx190vnbW9sKN1Maj87r-cbFbVTf1eC26oxXqum4S0tT67Ry5PAHL8vNmXlXTJ2msrPxCUpIkHyWjSU_R_lkglGGBEFfXVEzRxTmu1w1xEBdeuzGnaKNOroc8Ff3J_iDv5jbAHkETi4yd78U0xtvryrN59Ic9L-BZ-OuFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685751517</pqid></control><display><type>article</type><title>Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Widdows, Kate L. ; Panitchob, Nuttanont ; Crocker, Ian P. ; Please, Colin P. ; Hanson, Mark A. ; Sibley, Colin P. ; Johnstone, Edward D. ; Sengers, Bram G. ; Lewis, Rohan M. ; Glazier, Jocelyn D.</creator><creatorcontrib>Widdows, Kate L. ; Panitchob, Nuttanont ; Crocker, Ian P. ; Please, Colin P. ; Hanson, Mark A. ; Sibley, Colin P. ; Johnstone, Edward D. ; Sengers, Bram G. ; Lewis, Rohan M. ; Glazier, Jocelyn D.</creatorcontrib><description>ABSTRACT Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero‐trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l‐serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l‐serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l‐serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero‐trans uptake. Both L‐type amino acid transporter (LAT) 1 and LAT2 subtypes of system L were distributed to MVM, with L‐serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. FASEB J. 29, 2583‐2594 (2015). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.14-267773</identifier><identifier>PMID: 25761365</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Amino Acid Transport System y+ - metabolism ; Amino Acids - metabolism ; Amino Acids - pharmacokinetics ; antiporters ; Biological Transport ; Blotting, Western ; Carbon Radioisotopes ; Cell Membrane - metabolism ; Computer Simulation ; facilitated transport ; Female ; Fluorescent Antibody Technique ; Fusion Regulatory Protein 1, Light Chains - metabolism ; Humans ; Large Neutral Amino Acid-Transporter 1 - metabolism ; LAT2 (SLC7A8) ; Microvilli - metabolism ; Models, Biological ; overshoot phenomena ; Placenta - cytology ; Placenta - metabolism ; Pregnancy ; Research Communication ; Serine - metabolism ; Serine - pharmacokinetics ; Transport Vesicles - metabolism</subject><ispartof>The FASEB journal, 2015-06, Vol.29 (6), p.2583-2594</ispartof><rights>FASEB</rights><rights>FASEB.</rights><rights>The Author(s) 2015 FASEB</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4663-61db98b18c583035706a5867aff71b0ee34cbc08b5034bcf970650537d0c0f6a3</citedby><cites>FETCH-LOGICAL-c4663-61db98b18c583035706a5867aff71b0ee34cbc08b5034bcf970650537d0c0f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25761365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Widdows, Kate L.</creatorcontrib><creatorcontrib>Panitchob, Nuttanont</creatorcontrib><creatorcontrib>Crocker, Ian P.</creatorcontrib><creatorcontrib>Please, Colin P.</creatorcontrib><creatorcontrib>Hanson, Mark A.</creatorcontrib><creatorcontrib>Sibley, Colin P.</creatorcontrib><creatorcontrib>Johnstone, Edward D.</creatorcontrib><creatorcontrib>Sengers, Bram G.</creatorcontrib><creatorcontrib>Lewis, Rohan M.</creatorcontrib><creatorcontrib>Glazier, Jocelyn D.</creatorcontrib><title>Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero‐trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l‐serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l‐serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l‐serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero‐trans uptake. Both L‐type amino acid transporter (LAT) 1 and LAT2 subtypes of system L were distributed to MVM, with L‐serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. FASEB J. 29, 2583‐2594 (2015). www.fasebj.org</description><subject>Amino Acid Transport System y+ - metabolism</subject><subject>Amino Acids - metabolism</subject><subject>Amino Acids - pharmacokinetics</subject><subject>antiporters</subject><subject>Biological Transport</subject><subject>Blotting, Western</subject><subject>Carbon Radioisotopes</subject><subject>Cell Membrane - metabolism</subject><subject>Computer Simulation</subject><subject>facilitated transport</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Fusion Regulatory Protein 1, Light Chains - metabolism</subject><subject>Humans</subject><subject>Large Neutral Amino Acid-Transporter 1 - metabolism</subject><subject>LAT2 (SLC7A8)</subject><subject>Microvilli - metabolism</subject><subject>Models, Biological</subject><subject>overshoot phenomena</subject><subject>Placenta - cytology</subject><subject>Placenta - metabolism</subject><subject>Pregnancy</subject><subject>Research Communication</subject><subject>Serine - metabolism</subject><subject>Serine - pharmacokinetics</subject><subject>Transport Vesicles - metabolism</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU2PFCEQhonRuOPozbPh6MFei6b56IuJbhxds4kH9Uxomu5h0sDY0DvuP_BnyzrjZr3opSioh5cqXoSeEzgn0PLXw-6cNFXNhRD0AVoRRqHiksNDtALZ1hXnVJ6hJyntAIAA4Y_RWc0EJ5SzFfp5GbIdZ51dDDgO2ES_X_LvrZ6wj72dXBjxweUt9tZ3sw4W5xLTPs4Zp7z0ziY822urp4SDPWAXkhu3OZUkR6y9CyUa12P7w2x1GO_f9_b2yCWfnqJHQ1Gwz07rGn3bvP968bG6-vzh8uLtVWWaMknFSd-1siPSMEmBMgFcM8mFHgZBOrCWNqYzIDsGtOnM0BaAAaOiBwMD13SN3hx190vnbW9sKN1Maj87r-cbFbVTf1eC26oxXqum4S0tT67Ry5PAHL8vNmXlXTJ2msrPxCUpIkHyWjSU_R_lkglGGBEFfXVEzRxTmu1w1xEBdeuzGnaKNOroc8Ff3J_iDv5jbAHkETi4yd78U0xtvryrN59Ic9L-BZ-OuFA</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Widdows, Kate L.</creator><creator>Panitchob, Nuttanont</creator><creator>Crocker, Ian P.</creator><creator>Please, Colin P.</creator><creator>Hanson, Mark A.</creator><creator>Sibley, Colin P.</creator><creator>Johnstone, Edward D.</creator><creator>Sengers, Bram G.</creator><creator>Lewis, Rohan M.</creator><creator>Glazier, Jocelyn D.</creator><general>Federation of American Societies for Experimental Biology</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>201506</creationdate><title>Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms</title><author>Widdows, Kate L. ; Panitchob, Nuttanont ; Crocker, Ian P. ; Please, Colin P. ; Hanson, Mark A. ; Sibley, Colin P. ; Johnstone, Edward D. ; Sengers, Bram G. ; Lewis, Rohan M. ; Glazier, Jocelyn D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4663-61db98b18c583035706a5867aff71b0ee34cbc08b5034bcf970650537d0c0f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Transport System y+ - metabolism</topic><topic>Amino Acids - metabolism</topic><topic>Amino Acids - pharmacokinetics</topic><topic>antiporters</topic><topic>Biological Transport</topic><topic>Blotting, Western</topic><topic>Carbon Radioisotopes</topic><topic>Cell Membrane - metabolism</topic><topic>Computer Simulation</topic><topic>facilitated transport</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Fusion Regulatory Protein 1, Light Chains - metabolism</topic><topic>Humans</topic><topic>Large Neutral Amino Acid-Transporter 1 - metabolism</topic><topic>LAT2 (SLC7A8)</topic><topic>Microvilli - metabolism</topic><topic>Models, Biological</topic><topic>overshoot phenomena</topic><topic>Placenta - cytology</topic><topic>Placenta - metabolism</topic><topic>Pregnancy</topic><topic>Research Communication</topic><topic>Serine - metabolism</topic><topic>Serine - pharmacokinetics</topic><topic>Transport Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Widdows, Kate L.</creatorcontrib><creatorcontrib>Panitchob, Nuttanont</creatorcontrib><creatorcontrib>Crocker, Ian P.</creatorcontrib><creatorcontrib>Please, Colin P.</creatorcontrib><creatorcontrib>Hanson, Mark A.</creatorcontrib><creatorcontrib>Sibley, Colin P.</creatorcontrib><creatorcontrib>Johnstone, Edward D.</creatorcontrib><creatorcontrib>Sengers, Bram G.</creatorcontrib><creatorcontrib>Lewis, Rohan M.</creatorcontrib><creatorcontrib>Glazier, Jocelyn D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Widdows, Kate L.</au><au>Panitchob, Nuttanont</au><au>Crocker, Ian P.</au><au>Please, Colin P.</au><au>Hanson, Mark A.</au><au>Sibley, Colin P.</au><au>Johnstone, Edward D.</au><au>Sengers, Bram G.</au><au>Lewis, Rohan M.</au><au>Glazier, Jocelyn D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2015-06</date><risdate>2015</risdate><volume>29</volume><issue>6</issue><spage>2583</spage><epage>2594</epage><pages>2583-2594</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero‐trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l‐serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l‐serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l‐serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero‐trans uptake. Both L‐type amino acid transporter (LAT) 1 and LAT2 subtypes of system L were distributed to MVM, with L‐serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. FASEB J. 29, 2583‐2594 (2015). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>25761365</pmid><doi>10.1096/fj.14-267773</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2015-06, Vol.29 (6), p.2583-2594
issn 0892-6638
1530-6860
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4469330
source Wiley-Blackwell Read & Publish Collection
subjects Amino Acid Transport System y+ - metabolism
Amino Acids - metabolism
Amino Acids - pharmacokinetics
antiporters
Biological Transport
Blotting, Western
Carbon Radioisotopes
Cell Membrane - metabolism
Computer Simulation
facilitated transport
Female
Fluorescent Antibody Technique
Fusion Regulatory Protein 1, Light Chains - metabolism
Humans
Large Neutral Amino Acid-Transporter 1 - metabolism
LAT2 (SLC7A8)
Microvilli - metabolism
Models, Biological
overshoot phenomena
Placenta - cytology
Placenta - metabolism
Pregnancy
Research Communication
Serine - metabolism
Serine - pharmacokinetics
Transport Vesicles - metabolism
title Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20computational%20modeling%20with%20membrane%20transport%20studies%20reveals%20new%20insights%20into%20amino%20acid%20exchange%20transport%20mechanisms&rft.jtitle=The%20FASEB%20journal&rft.au=Widdows,%20Kate%20L.&rft.date=2015-06&rft.volume=29&rft.issue=6&rft.spage=2583&rft.epage=2594&rft.pages=2583-2594&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.14-267773&rft_dat=%3Cproquest_pubme%3E1685751517%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4663-61db98b18c583035706a5867aff71b0ee34cbc08b5034bcf970650537d0c0f6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685751517&rft_id=info:pmid/25761365&rfr_iscdi=true