Loading…
Dynamic dendritic compartmentalization underlies stimulus-specific adaptation in an insect neuron
In many neural systems, repeated stimulation leads to stimulus-specific adaptation (SSA), with responses to repeated signals being reduced while responses to novel stimuli remain unaffected. The underlying mechanisms of SSA remain mostly hypothetical. One hypothesis is that dendritic processes gener...
Saved in:
Published in: | Journal of neurophysiology 2015-06, Vol.113 (10), p.3787-3797 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In many neural systems, repeated stimulation leads to stimulus-specific adaptation (SSA), with responses to repeated signals being reduced while responses to novel stimuli remain unaffected. The underlying mechanisms of SSA remain mostly hypothetical. One hypothesis is that dendritic processes generate SSA. Evidence for such a mechanism was recently described in an insect auditory interneuron (TN-1 in Neoconocephalus triops). Afferents, tuned to different frequencies, connect with different parts of the TN-1 dendrite. The specific adaptation of these inputs relies on calcium and sodium accumulation within the dendrite, with calcium having a transient and sodium a tonic effect. Using imaging techniques, we tested here whether the accumulation of these ions remained limited to the stimulated parts of the dendrite. Stimulation with a fast pulse rate, which results in strong adaptation, elicited a transient dendritic calcium signal. In contrast, the sodium signal was tonic, remaining high during the fast pulse rate stimulus. These time courses followed the predictions from the previous pharmacological experiments. The peak positions of the calcium and sodium signals differed with the carrier frequency of the stimulus; at 15 kHz, peak locations were significantly more rostral than at 40 kHz. This matched the predictions made from neuroanatomical data. Our findings confirm that excitatory postsynaptic potentials rather than spiking cause the increase of dendritic calcium and sodium concentrations and that these increases remain limited to the stimulated parts of the dendrite. This supports the hypothesis of "dynamic dendritic compartmentalization" underlying SSA in this auditory interneuron. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00945.2014 |