Loading…

Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps

The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps;...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-06, Vol.5 (1), p.11727-11727, Article 11727
Main Authors: Wong, Jessica X. H., Li, Xiaochun, Liu, Frank S. F., Yu, Hua-Zhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-46de1e4e4c25aea76c86b9b2d75a6d84651d749541fede7af396b5bda7a418b23
cites cdi_FETCH-LOGICAL-c438t-46de1e4e4c25aea76c86b9b2d75a6d84651d749541fede7af396b5bda7a418b23
container_end_page 11727
container_issue 1
container_start_page 11727
container_title Scientific reports
container_volume 5
creator Wong, Jessica X. H.
Li, Xiaochun
Liu, Frank S. F.
Yu, Hua-Zhong
description The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.
doi_str_mv 10.1038/srep11727
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4485167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899563667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-46de1e4e4c25aea76c86b9b2d75a6d84651d749541fede7af396b5bda7a418b23</originalsourceid><addsrcrecordid>eNplkctKAzEUhoMoKurCF5CAGxWqk0wuMxvBu4IgeFmHTHKmjbTJmEwV395otVTN5gTOx5c__Ahtk-KQFGV1lCJ0hEgql9A6LRgf0JLS5YX7GtpK6bnIh9OakXoVrVFBKBVFtY7uzl0E0-N70Nb5IQ4tPg1e40tnAZ_qaEKeJynp94TbEPG500MfUu9Mwm-uH-GHiY59Nwo-Y12XNtFKq8cJtr7nBnq6vHg8ux7c3l3dnJ3cDgwrq37AhAUCDJihXIOWwlSiqRtqJdfCVkxwYiWrOSMtWJC6LWvR8MZqqRmpGlpuoOOZt5s2E7AGfB_1WHXR5TzvKminfm-8G6lheFWMVZwImQV734IYXqaQejVxycB4rD2EaVJE1FTyUlCR0d0_6HOYRp-_p0hV11yU4ku4P6NMDCmX0s7DkEJ9NqXmTWV2ZzH9nPzpJQMHMyDllR9CXHjyn-0Dl3-c7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899563667</pqid></control><display><type>article</type><title>Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wong, Jessica X. H. ; Li, Xiaochun ; Liu, Frank S. F. ; Yu, Hua-Zhong</creator><creatorcontrib>Wong, Jessica X. H. ; Li, Xiaochun ; Liu, Frank S. F. ; Yu, Hua-Zhong</creatorcontrib><description>The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep11727</identifier><identifier>PMID: 26122608</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 49/1 ; 49/47 ; 49/62 ; 639/638/11/277 ; 639/638/11/872 ; Alzheimer's disease ; Automatic Data Processing ; Chorionic gonadotropin ; Chorionic Gonadotropin - urine ; Computers, Handheld ; Data processing ; Female ; Gonadotropins ; Humanities and Social Sciences ; Humans ; Instrumentation ; Mobile Applications ; multidisciplinary ; Pituitary (anterior) ; Point-of-Care Systems ; Pregnancy ; Pregnancy Tests, Immunologic ; Science ; Smartphone ; Smartphones</subject><ispartof>Scientific reports, 2015-06, Vol.5 (1), p.11727-11727, Article 11727</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-46de1e4e4c25aea76c86b9b2d75a6d84651d749541fede7af396b5bda7a418b23</citedby><cites>FETCH-LOGICAL-c438t-46de1e4e4c25aea76c86b9b2d75a6d84651d749541fede7af396b5bda7a418b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899563667/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899563667?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26122608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Jessica X. H.</creatorcontrib><creatorcontrib>Li, Xiaochun</creatorcontrib><creatorcontrib>Liu, Frank S. F.</creatorcontrib><creatorcontrib>Yu, Hua-Zhong</creatorcontrib><title>Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.</description><subject>142/126</subject><subject>49/1</subject><subject>49/47</subject><subject>49/62</subject><subject>639/638/11/277</subject><subject>639/638/11/872</subject><subject>Alzheimer's disease</subject><subject>Automatic Data Processing</subject><subject>Chorionic gonadotropin</subject><subject>Chorionic Gonadotropin - urine</subject><subject>Computers, Handheld</subject><subject>Data processing</subject><subject>Female</subject><subject>Gonadotropins</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Instrumentation</subject><subject>Mobile Applications</subject><subject>multidisciplinary</subject><subject>Pituitary (anterior)</subject><subject>Point-of-Care Systems</subject><subject>Pregnancy</subject><subject>Pregnancy Tests, Immunologic</subject><subject>Science</subject><subject>Smartphone</subject><subject>Smartphones</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkctKAzEUhoMoKurCF5CAGxWqk0wuMxvBu4IgeFmHTHKmjbTJmEwV395otVTN5gTOx5c__Ahtk-KQFGV1lCJ0hEgql9A6LRgf0JLS5YX7GtpK6bnIh9OakXoVrVFBKBVFtY7uzl0E0-N70Nb5IQ4tPg1e40tnAZ_qaEKeJynp94TbEPG500MfUu9Mwm-uH-GHiY59Nwo-Y12XNtFKq8cJtr7nBnq6vHg8ux7c3l3dnJ3cDgwrq37AhAUCDJihXIOWwlSiqRtqJdfCVkxwYiWrOSMtWJC6LWvR8MZqqRmpGlpuoOOZt5s2E7AGfB_1WHXR5TzvKminfm-8G6lheFWMVZwImQV734IYXqaQejVxycB4rD2EaVJE1FTyUlCR0d0_6HOYRp-_p0hV11yU4ku4P6NMDCmX0s7DkEJ9NqXmTWV2ZzH9nPzpJQMHMyDllR9CXHjyn-0Dl3-c7g</recordid><startdate>20150630</startdate><enddate>20150630</enddate><creator>Wong, Jessica X. H.</creator><creator>Li, Xiaochun</creator><creator>Liu, Frank S. F.</creator><creator>Yu, Hua-Zhong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150630</creationdate><title>Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps</title><author>Wong, Jessica X. H. ; Li, Xiaochun ; Liu, Frank S. F. ; Yu, Hua-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-46de1e4e4c25aea76c86b9b2d75a6d84651d749541fede7af396b5bda7a418b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>142/126</topic><topic>49/1</topic><topic>49/47</topic><topic>49/62</topic><topic>639/638/11/277</topic><topic>639/638/11/872</topic><topic>Alzheimer's disease</topic><topic>Automatic Data Processing</topic><topic>Chorionic gonadotropin</topic><topic>Chorionic Gonadotropin - urine</topic><topic>Computers, Handheld</topic><topic>Data processing</topic><topic>Female</topic><topic>Gonadotropins</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Instrumentation</topic><topic>Mobile Applications</topic><topic>multidisciplinary</topic><topic>Pituitary (anterior)</topic><topic>Point-of-Care Systems</topic><topic>Pregnancy</topic><topic>Pregnancy Tests, Immunologic</topic><topic>Science</topic><topic>Smartphone</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Jessica X. H.</creatorcontrib><creatorcontrib>Li, Xiaochun</creatorcontrib><creatorcontrib>Liu, Frank S. F.</creatorcontrib><creatorcontrib>Yu, Hua-Zhong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Jessica X. H.</au><au>Li, Xiaochun</au><au>Liu, Frank S. F.</au><au>Yu, Hua-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-06-30</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>11727</spage><epage>11727</epage><pages>11727-11727</pages><artnum>11727</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26122608</pmid><doi>10.1038/srep11727</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-06, Vol.5 (1), p.11727-11727, Article 11727
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4485167
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 142/126
49/1
49/47
49/62
639/638/11/277
639/638/11/872
Alzheimer's disease
Automatic Data Processing
Chorionic gonadotropin
Chorionic Gonadotropin - urine
Computers, Handheld
Data processing
Female
Gonadotropins
Humanities and Social Sciences
Humans
Instrumentation
Mobile Applications
multidisciplinary
Pituitary (anterior)
Point-of-Care Systems
Pregnancy
Pregnancy Tests, Immunologic
Science
Smartphone
Smartphones
title Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Reading%20of%20Bona%20Fide%20Barcode%20Assays%20for%20Diagnostics%20with%20Smartphone%20Apps&rft.jtitle=Scientific%20reports&rft.au=Wong,%20Jessica%20X.%20H.&rft.date=2015-06-30&rft.volume=5&rft.issue=1&rft.spage=11727&rft.epage=11727&rft.pages=11727-11727&rft.artnum=11727&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep11727&rft_dat=%3Cproquest_pubme%3E1899563667%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-46de1e4e4c25aea76c86b9b2d75a6d84651d749541fede7af396b5bda7a418b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899563667&rft_id=info:pmid/26122608&rfr_iscdi=true