Loading…

Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography

Materials degradation—the main limiting factor for widespread application of alloy anodes in battery systems—was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2015-06, Vol.6 (1), p.7496-7496, Article 7496
Main Authors: Wang, Jiajun, Eng, Christopher, Chen-Wiegart, Yu-chen Karen, Wang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-bec6939723c82e9e652f818465f9a8988c2b2b4262d41988e74addf454469c753
cites cdi_FETCH-LOGICAL-c535t-bec6939723c82e9e652f818465f9a8988c2b2b4262d41988e74addf454469c753
container_end_page 7496
container_issue 1
container_start_page 7496
container_title Nature communications
container_volume 6
creator Wang, Jiajun
Eng, Christopher
Chen-Wiegart, Yu-chen Karen
Wang, Jun
description Materials degradation—the main limiting factor for widespread application of alloy anodes in battery systems—was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries. In situ 3D visualization of sodium-ion battery processes is challenging due to the highly active sodium metal and the sluggish kinetics. Here, the authors present a X-ray tomography technique, which enables tracking the sodiation–desodiation process of a Sn anode in battery operation.
doi_str_mv 10.1038/ncomms8496
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4491187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3726748431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-bec6939723c82e9e652f818465f9a8988c2b2b4262d41988e74addf454469c753</originalsourceid><addsrcrecordid>eNplkc1u1DAUhS1ERau2Gx4ARbBBoEDsOI69qYQqfipVggVI7CzHuZm4iu2p7SANq75D35AnwdO0wwDe-F6dT-f6-CL0FFdvcFXzt057ayOngj1CR6SiuMQtqR_v1YfoNMarKp9aYE7pE3RIGMak5vQI_fwSfGfcqkhjACh7Y8FF452aiuh7o1Kuf93c9rDrCriezWS6YGZbGHeHzbbcKp1KCYKBWHSbO8mkuRhV6IvvZVCbwinnk7d-FdR63Jygg0FNEU7v72P07cP7r-efysvPHy_O312WuqmbVHagmahFDqI5AQGsIQPPOVgzCMUF55p0pKOEkZ7i3EJLVd8PtKGUCd029TE6W3zXc2eh1-BSUJNcB2NV2EivjPxbcWaUK_9DUiow5m02eL4Y-JiMjNok0KP2zoFOEhMiiNhCL--nBH89Q0zSmqhhmpQDP0eJmcCswhUnGX3xD3rl55C_fKFI04q2ytSrhdLBxxhg2L0YV3K7evln9Rl-tp9xhz4sOgOvFyBmya0g7M383-43z0O8ZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691257970</pqid></control><display><type>article</type><title>Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography</title><source>Nature_系列刊</source><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Jiajun ; Eng, Christopher ; Chen-Wiegart, Yu-chen Karen ; Wang, Jun</creator><creatorcontrib>Wang, Jiajun ; Eng, Christopher ; Chen-Wiegart, Yu-chen Karen ; Wang, Jun ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Materials degradation—the main limiting factor for widespread application of alloy anodes in battery systems—was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries. In situ 3D visualization of sodium-ion battery processes is challenging due to the highly active sodium metal and the sluggish kinetics. Here, the authors present a X-ray tomography technique, which enables tracking the sodiation–desodiation process of a Sn anode in battery operation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms8496</identifier><identifier>PMID: 26112384</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/301/930/2735 ; 639/925 ; Alloys ; Automation ; Equilibrium ; Humanities and Social Sciences ; Lithium ; Morphology ; multidisciplinary ; Science ; Science (multidisciplinary) ; Sodium ; Tomography</subject><ispartof>Nature communications, 2015-06, Vol.6 (1), p.7496-7496, Article 7496</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><rights>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-bec6939723c82e9e652f818465f9a8988c2b2b4262d41988e74addf454469c753</citedby><cites>FETCH-LOGICAL-c535t-bec6939723c82e9e652f818465f9a8988c2b2b4262d41988e74addf454469c753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1691257970/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1691257970?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26112384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1229297$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Eng, Christopher</creatorcontrib><creatorcontrib>Chen-Wiegart, Yu-chen Karen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Materials degradation—the main limiting factor for widespread application of alloy anodes in battery systems—was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries. In situ 3D visualization of sodium-ion battery processes is challenging due to the highly active sodium metal and the sluggish kinetics. Here, the authors present a X-ray tomography technique, which enables tracking the sodiation–desodiation process of a Sn anode in battery operation.</description><subject>639/301/299/891</subject><subject>639/301/930/2735</subject><subject>639/925</subject><subject>Alloys</subject><subject>Automation</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Lithium</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>Tomography</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc1u1DAUhS1ERau2Gx4ARbBBoEDsOI69qYQqfipVggVI7CzHuZm4iu2p7SANq75D35AnwdO0wwDe-F6dT-f6-CL0FFdvcFXzt057ayOngj1CR6SiuMQtqR_v1YfoNMarKp9aYE7pE3RIGMak5vQI_fwSfGfcqkhjACh7Y8FF452aiuh7o1Kuf93c9rDrCriezWS6YGZbGHeHzbbcKp1KCYKBWHSbO8mkuRhV6IvvZVCbwinnk7d-FdR63Jygg0FNEU7v72P07cP7r-efysvPHy_O312WuqmbVHagmahFDqI5AQGsIQPPOVgzCMUF55p0pKOEkZ7i3EJLVd8PtKGUCd029TE6W3zXc2eh1-BSUJNcB2NV2EivjPxbcWaUK_9DUiow5m02eL4Y-JiMjNok0KP2zoFOEhMiiNhCL--nBH89Q0zSmqhhmpQDP0eJmcCswhUnGX3xD3rl55C_fKFI04q2ytSrhdLBxxhg2L0YV3K7evln9Rl-tp9xhz4sOgOvFyBmya0g7M383-43z0O8ZQ</recordid><startdate>20150626</startdate><enddate>20150626</enddate><creator>Wang, Jiajun</creator><creator>Eng, Christopher</creator><creator>Chen-Wiegart, Yu-chen Karen</creator><creator>Wang, Jun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150626</creationdate><title>Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography</title><author>Wang, Jiajun ; Eng, Christopher ; Chen-Wiegart, Yu-chen Karen ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-bec6939723c82e9e652f818465f9a8988c2b2b4262d41988e74addf454469c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/299/891</topic><topic>639/301/930/2735</topic><topic>639/925</topic><topic>Alloys</topic><topic>Automation</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Lithium</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Eng, Christopher</creatorcontrib><creatorcontrib>Chen-Wiegart, Yu-chen Karen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiajun</au><au>Eng, Christopher</au><au>Chen-Wiegart, Yu-chen Karen</au><au>Wang, Jun</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-06-26</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>7496</spage><epage>7496</epage><pages>7496-7496</pages><artnum>7496</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Materials degradation—the main limiting factor for widespread application of alloy anodes in battery systems—was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries. In situ 3D visualization of sodium-ion battery processes is challenging due to the highly active sodium metal and the sluggish kinetics. Here, the authors present a X-ray tomography technique, which enables tracking the sodiation–desodiation process of a Sn anode in battery operation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26112384</pmid><doi>10.1038/ncomms8496</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-06, Vol.6 (1), p.7496-7496, Article 7496
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4491187
source Nature_系列刊; Open Access: PubMed Central; ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/299/891
639/301/930/2735
639/925
Alloys
Automation
Equilibrium
Humanities and Social Sciences
Lithium
Morphology
multidisciplinary
Science
Science (multidisciplinary)
Sodium
Tomography
title Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20three-dimensional%20sodiation%E2%80%93desodiation%20equilibrium%20in%20sodium-ion%20batteries%20by%20in%20situ%20hard%20X-ray%20nanotomography&rft.jtitle=Nature%20communications&rft.au=Wang,%20Jiajun&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2015-06-26&rft.volume=6&rft.issue=1&rft.spage=7496&rft.epage=7496&rft.pages=7496-7496&rft.artnum=7496&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms8496&rft_dat=%3Cproquest_pubme%3E3726748431%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-bec6939723c82e9e652f818465f9a8988c2b2b4262d41988e74addf454469c753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1691257970&rft_id=info:pmid/26112384&rfr_iscdi=true