Loading…

HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs

Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segment...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2015-05, Vol.16 (1), p.170-170, Article 170
Main Authors: Russ, Daniel E, Ho, Kwan-Yuet, Longo, Nancy S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c570t-9323a18ab73974706af715bc399f95659eb618d868dfdf141a9b2703a44a4c603
cites cdi_FETCH-LOGICAL-c570t-9323a18ab73974706af715bc399f95659eb618d868dfdf141a9b2703a44a4c603
container_end_page 170
container_issue 1
container_start_page 170
container_title BMC bioinformatics
container_volume 16
creator Russ, Daniel E
Ho, Kwan-Yuet
Longo, Nancy S
description Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segments of rearranged immunoglobulin (Ig) genes. Our new algorithm enhances the former JOINSOLVER algorithm by processing sequences with insertions and/or deletions (indels) and improves the efficiency for large datasets provided by high throughput sequencing. In our simulations, which include rearrangements with indels, the V-matching success rate improved from 61% for partial alignments of sequences with indels in the original algorithm to over 99% in the approximate algorithm. An improvement in the alignment of human VDJ rearrangements over the initial JOINSOLVER algorithm was also seen when compared to the Stanford.S22 human Ig dataset with an online VDJ partitioning software evaluation tool. HTJoinSolver can rapidly identify V- and J-segments with indels to high accuracy for mutated sequences when the mutation probability is around 30% and 20% respectively. The D-segment is much harder to fit even at 20% mutation probability. For all segments, the probability of correctly matching V, D, and J increases with our alignment score.
doi_str_mv 10.1186/s12859-015-0589-x
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4492005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541358742</galeid><sourcerecordid>A541358742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-9323a18ab73974706af715bc399f95659eb618d868dfdf141a9b2703a44a4c603</originalsourceid><addsrcrecordid>eNptUlFr3SAUDmNj7br9gL2MwF66h7QaNeoeBqXtdlsKhbXbq5hEM0fUTM3l3n9fs9uVXhiCnnP8vs_j4SuK9xCcQMia0whrRngFIKkAYbzavCgOIaawqiEgL5_FB8WbGH8DACkD5HVxUDc5big5LLar-2tv3J0f1yp8Llezla401s7OD6Nv59G48ufFdTnJkEwy3hk3lHNcdjlNwW-MlUmV_dZJa7oyV4YgrV3uO-9iCtI41Zft9m-qwjon1iej49vilZZjVO8ez6Pix9fL-_NVdXP77er87KbqCAWp4qhGEjLZUsQppqCRmkLSdohzzUlDuGobyHrWsF73GmIoeVtTgCTGEncNQEfFl53uNLdW9Z1yualRTCF3HrbCSyP2b5z5JQa_FhjzGgCSBY4fBYL_M6uYhDWxU-MonfJzFLBhiFDM8PLWxx10kKMSxmmfFbsFLs4IhogwiuuMOvkPKq9e5Rl6p7TJ9T3Cpz1CxiS1SYOcYxRXd9_3sXCH7YKPMSj99FMIxOIasXONyK4Ri2vEJnM-PB_RE-OfTdADgFa-9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683574840</pqid></control><display><type>article</type><title>HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Russ, Daniel E ; Ho, Kwan-Yuet ; Longo, Nancy S</creator><creatorcontrib>Russ, Daniel E ; Ho, Kwan-Yuet ; Longo, Nancy S</creatorcontrib><description>Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segments of rearranged immunoglobulin (Ig) genes. Our new algorithm enhances the former JOINSOLVER algorithm by processing sequences with insertions and/or deletions (indels) and improves the efficiency for large datasets provided by high throughput sequencing. In our simulations, which include rearrangements with indels, the V-matching success rate improved from 61% for partial alignments of sequences with indels in the original algorithm to over 99% in the approximate algorithm. An improvement in the alignment of human VDJ rearrangements over the initial JOINSOLVER algorithm was also seen when compared to the Stanford.S22 human Ig dataset with an online VDJ partitioning software evaluation tool. HTJoinSolver can rapidly identify V- and J-segments with indels to high accuracy for mutated sequences when the mutation probability is around 30% and 20% respectively. The D-segment is much harder to fit even at 20% mutation probability. For all segments, the probability of correctly matching V, D, and J increases with our alignment score.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-015-0589-x</identifier><identifier>PMID: 26001675</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Base Sequence ; Computational Biology - methods ; Conserved Sequence ; Gene Rearrangement ; Humans ; Immunoglobulin Joining Region - genetics ; Immunoglobulin Variable Region - genetics ; Immunoglobulins ; Methodology ; Molecular Sequence Data ; Mutation - genetics ; Physiological aspects ; Software</subject><ispartof>BMC bioinformatics, 2015-05, Vol.16 (1), p.170-170, Article 170</ispartof><rights>COPYRIGHT 2015 BioMed Central Ltd.</rights><rights>Russ et al.; licensee BioMed Central. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-9323a18ab73974706af715bc399f95659eb618d868dfdf141a9b2703a44a4c603</citedby><cites>FETCH-LOGICAL-c570t-9323a18ab73974706af715bc399f95659eb618d868dfdf141a9b2703a44a4c603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492005/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492005/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26001675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russ, Daniel E</creatorcontrib><creatorcontrib>Ho, Kwan-Yuet</creatorcontrib><creatorcontrib>Longo, Nancy S</creatorcontrib><title>HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segments of rearranged immunoglobulin (Ig) genes. Our new algorithm enhances the former JOINSOLVER algorithm by processing sequences with insertions and/or deletions (indels) and improves the efficiency for large datasets provided by high throughput sequencing. In our simulations, which include rearrangements with indels, the V-matching success rate improved from 61% for partial alignments of sequences with indels in the original algorithm to over 99% in the approximate algorithm. An improvement in the alignment of human VDJ rearrangements over the initial JOINSOLVER algorithm was also seen when compared to the Stanford.S22 human Ig dataset with an online VDJ partitioning software evaluation tool. HTJoinSolver can rapidly identify V- and J-segments with indels to high accuracy for mutated sequences when the mutation probability is around 30% and 20% respectively. The D-segment is much harder to fit even at 20% mutation probability. For all segments, the probability of correctly matching V, D, and J increases with our alignment score.</description><subject>Algorithms</subject><subject>Base Sequence</subject><subject>Computational Biology - methods</subject><subject>Conserved Sequence</subject><subject>Gene Rearrangement</subject><subject>Humans</subject><subject>Immunoglobulin Joining Region - genetics</subject><subject>Immunoglobulin Variable Region - genetics</subject><subject>Immunoglobulins</subject><subject>Methodology</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Physiological aspects</subject><subject>Software</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptUlFr3SAUDmNj7br9gL2MwF66h7QaNeoeBqXtdlsKhbXbq5hEM0fUTM3l3n9fs9uVXhiCnnP8vs_j4SuK9xCcQMia0whrRngFIKkAYbzavCgOIaawqiEgL5_FB8WbGH8DACkD5HVxUDc5big5LLar-2tv3J0f1yp8Llezla401s7OD6Nv59G48ufFdTnJkEwy3hk3lHNcdjlNwW-MlUmV_dZJa7oyV4YgrV3uO-9iCtI41Zft9m-qwjon1iej49vilZZjVO8ez6Pix9fL-_NVdXP77er87KbqCAWp4qhGEjLZUsQppqCRmkLSdohzzUlDuGobyHrWsF73GmIoeVtTgCTGEncNQEfFl53uNLdW9Z1yualRTCF3HrbCSyP2b5z5JQa_FhjzGgCSBY4fBYL_M6uYhDWxU-MonfJzFLBhiFDM8PLWxx10kKMSxmmfFbsFLs4IhogwiuuMOvkPKq9e5Rl6p7TJ9T3Cpz1CxiS1SYOcYxRXd9_3sXCH7YKPMSj99FMIxOIasXONyK4Ri2vEJnM-PB_RE-OfTdADgFa-9A</recordid><startdate>20150523</startdate><enddate>20150523</enddate><creator>Russ, Daniel E</creator><creator>Ho, Kwan-Yuet</creator><creator>Longo, Nancy S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150523</creationdate><title>HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs</title><author>Russ, Daniel E ; Ho, Kwan-Yuet ; Longo, Nancy S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-9323a18ab73974706af715bc399f95659eb618d868dfdf141a9b2703a44a4c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Base Sequence</topic><topic>Computational Biology - methods</topic><topic>Conserved Sequence</topic><topic>Gene Rearrangement</topic><topic>Humans</topic><topic>Immunoglobulin Joining Region - genetics</topic><topic>Immunoglobulin Variable Region - genetics</topic><topic>Immunoglobulins</topic><topic>Methodology</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Physiological aspects</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russ, Daniel E</creatorcontrib><creatorcontrib>Ho, Kwan-Yuet</creatorcontrib><creatorcontrib>Longo, Nancy S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russ, Daniel E</au><au>Ho, Kwan-Yuet</au><au>Longo, Nancy S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2015-05-23</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>170</spage><epage>170</epage><pages>170-170</pages><artnum>170</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segments of rearranged immunoglobulin (Ig) genes. Our new algorithm enhances the former JOINSOLVER algorithm by processing sequences with insertions and/or deletions (indels) and improves the efficiency for large datasets provided by high throughput sequencing. In our simulations, which include rearrangements with indels, the V-matching success rate improved from 61% for partial alignments of sequences with indels in the original algorithm to over 99% in the approximate algorithm. An improvement in the alignment of human VDJ rearrangements over the initial JOINSOLVER algorithm was also seen when compared to the Stanford.S22 human Ig dataset with an online VDJ partitioning software evaluation tool. HTJoinSolver can rapidly identify V- and J-segments with indels to high accuracy for mutated sequences when the mutation probability is around 30% and 20% respectively. The D-segment is much harder to fit even at 20% mutation probability. For all segments, the probability of correctly matching V, D, and J increases with our alignment score.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>26001675</pmid><doi>10.1186/s12859-015-0589-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2015-05, Vol.16 (1), p.170-170, Article 170
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4492005
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Base Sequence
Computational Biology - methods
Conserved Sequence
Gene Rearrangement
Humans
Immunoglobulin Joining Region - genetics
Immunoglobulin Variable Region - genetics
Immunoglobulins
Methodology
Molecular Sequence Data
Mutation - genetics
Physiological aspects
Software
title HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HTJoinSolver:%20Human%20immunoglobulin%20VDJ%20partitioning%20using%20approximate%20dynamic%20programming%20constrained%20by%20conserved%20motifs&rft.jtitle=BMC%20bioinformatics&rft.au=Russ,%20Daniel%20E&rft.date=2015-05-23&rft.volume=16&rft.issue=1&rft.spage=170&rft.epage=170&rft.pages=170-170&rft.artnum=170&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-015-0589-x&rft_dat=%3Cgale_pubme%3EA541358742%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-9323a18ab73974706af715bc399f95659eb618d868dfdf141a9b2703a44a4c603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683574840&rft_id=info:pmid/26001675&rft_galeid=A541358742&rfr_iscdi=true