Loading…

Cognition and Motor Impairment Correlates with Exercise Test Performance after Stroke

Exercise not only benefits physical and cardiovascular function in older adults with multiple chronic conditions but may also improve cognitive function. Peak HR, a physiological indicator for maximal effort, is the most common and practical means of establishing and monitoring exercise intensity. I...

Full description

Saved in:
Bibliographic Details
Published in:Medicine and science in sports and exercise 2013-04, Vol.45 (4), p.622-627
Main Authors: TANG, Ada, ENG, Janice J, TSANG, Teresa S. M, KRASSIOUKOV, Andrei V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exercise not only benefits physical and cardiovascular function in older adults with multiple chronic conditions but may also improve cognitive function. Peak HR, a physiological indicator for maximal effort, is the most common and practical means of establishing and monitoring exercise intensity. In particular, in the absence of graded maximal exercise test (GXT) results, age-predicted maximal HR values are typically used. Using individuals with stroke as a model for examining older adults with coexisting cardiovascular and neuromotor conditions, the purpose of this article was to examine the determinants associated with achieving age-predicted maximal HR on a GXT, with respect to neurological, cognitive, and lower limb function. Forty-seven participants with stroke (age, 67 ± 7 yr; 4 ± 3 yr poststroke (mean ± SD)) performed GXT. The peak values for gas exchange, HR, and RPE were noted. Logistic regression analysis was performed to examine determinants (neurological impairment, leg motor impairment, Montreal Cognitive Assessment score, and walking ability) associated with the ability to achieve age-predicted maximal HR on the GXT. V˙O2peak was 16.5 ± 6 mL·kg·min. Fourteen (30%) participants achieved ≥100% of age-predicted maximal HR. Logistic regression modeling revealed that the ability to achieve this threshold was associated with less leg motor impairment (P = 0.02; odds ratio, 2.3) and higher cognitive scores (P = 0.048; odds ratio, 1.3). These results suggest that noncardiopulmonary factors such as leg motor impairment and cognitive function are important contributors to achieving maximal effort during exercise tests. This study has important implications for poststroke exercise prescription, whereby training intensities that are based on peak HR from GXT may be underestimated among individuals with cognitive and physical impairments.
ISSN:0195-9131
1530-0315
DOI:10.1249/MSS.0b013e31827a0169