Loading…
Evolution of Functional Six-Nucleotide DNA
Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups no...
Saved in:
Published in: | Journal of the American Chemical Society 2015-06, Vol.137 (21), p.6734-6737 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3 |
container_end_page | 6737 |
container_issue | 21 |
container_start_page | 6734 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Zhang, Liqin Yang, Zunyi Sefah, Kwame Bradley, Kevin M Hoshika, Shuichi Kim, Myong-Jung Kim, Hyo-Joong Zhu, Guizhi Jiménez, Elizabeth Cansiz, Sena Teng, I-Ting Champanhac, Carole McLendon, Christopher Liu, Chen Zhang, Wen Gerloff, Dietlind L Huang, Zhen Tan, Weihong Benner, Steven A |
description | Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries. |
doi_str_mv | 10.1021/jacs.5b02251 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686065944</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK3ePEuOUkzd7yQXodRWhVIP6nnZ3exqSpqt2aTov3dDa1XwMh_MO-8MDwDnCI4QxOh6KbUfMQUxZugA9BHDMGYI80PQhxDiOEk56YET75ehpThFx6CHWcY5waQPhtONK9umcFXkbDRrK93Vsoyeio940erSuKbITXS7GJ-CIytLb852eQBeZtPnyX08f7x7mIznsaQoaWJKKLVUJpjmnGGdQWZNriUlSuVZYlOsEplDi5VONM1spmyW4_AYV0QzEuIA3Gx9161ahVVTNbUsxbouVrL-FE4W4u-kKt7Eq9sIyiBkhAWDy51B7d5b4xuxKrw2ZSkr41ovEE855CyjNEivtlJdO-9rY_dnEBQdXtHhFTu8QX7x-7W9-Jvnz-lua-naOqD0_3t9ATDRgz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686065944</pqid></control><display><type>article</type><title>Evolution of Functional Six-Nucleotide DNA</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Liqin ; Yang, Zunyi ; Sefah, Kwame ; Bradley, Kevin M ; Hoshika, Shuichi ; Kim, Myong-Jung ; Kim, Hyo-Joong ; Zhu, Guizhi ; Jiménez, Elizabeth ; Cansiz, Sena ; Teng, I-Ting ; Champanhac, Carole ; McLendon, Christopher ; Liu, Chen ; Zhang, Wen ; Gerloff, Dietlind L ; Huang, Zhen ; Tan, Weihong ; Benner, Steven A</creator><creatorcontrib>Zhang, Liqin ; Yang, Zunyi ; Sefah, Kwame ; Bradley, Kevin M ; Hoshika, Shuichi ; Kim, Myong-Jung ; Kim, Hyo-Joong ; Zhu, Guizhi ; Jiménez, Elizabeth ; Cansiz, Sena ; Teng, I-Ting ; Champanhac, Carole ; McLendon, Christopher ; Liu, Chen ; Zhang, Wen ; Gerloff, Dietlind L ; Huang, Zhen ; Tan, Weihong ; Benner, Steven A</creatorcontrib><description>Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b02251</identifier><identifier>PMID: 25966323</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - chemical synthesis ; DNA - chemistry ; DNA - genetics ; Gene Library ; Hep G2 Cells ; Humans ; Models, Molecular ; Polymerase Chain Reaction</subject><ispartof>Journal of the American Chemical Society, 2015-06, Vol.137 (21), p.6734-6737</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</citedby><cites>FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25966323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Liqin</creatorcontrib><creatorcontrib>Yang, Zunyi</creatorcontrib><creatorcontrib>Sefah, Kwame</creatorcontrib><creatorcontrib>Bradley, Kevin M</creatorcontrib><creatorcontrib>Hoshika, Shuichi</creatorcontrib><creatorcontrib>Kim, Myong-Jung</creatorcontrib><creatorcontrib>Kim, Hyo-Joong</creatorcontrib><creatorcontrib>Zhu, Guizhi</creatorcontrib><creatorcontrib>Jiménez, Elizabeth</creatorcontrib><creatorcontrib>Cansiz, Sena</creatorcontrib><creatorcontrib>Teng, I-Ting</creatorcontrib><creatorcontrib>Champanhac, Carole</creatorcontrib><creatorcontrib>McLendon, Christopher</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Gerloff, Dietlind L</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><creatorcontrib>Benner, Steven A</creatorcontrib><title>Evolution of Functional Six-Nucleotide DNA</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.</description><subject>DNA - chemical synthesis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Gene Library</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Polymerase Chain Reaction</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbK3ePEuOUkzd7yQXodRWhVIP6nnZ3exqSpqt2aTov3dDa1XwMh_MO-8MDwDnCI4QxOh6KbUfMQUxZugA9BHDMGYI80PQhxDiOEk56YET75ehpThFx6CHWcY5waQPhtONK9umcFXkbDRrK93Vsoyeio940erSuKbITXS7GJ-CIytLb852eQBeZtPnyX08f7x7mIznsaQoaWJKKLVUJpjmnGGdQWZNriUlSuVZYlOsEplDi5VONM1spmyW4_AYV0QzEuIA3Gx9161ahVVTNbUsxbouVrL-FE4W4u-kKt7Eq9sIyiBkhAWDy51B7d5b4xuxKrw2ZSkr41ovEE855CyjNEivtlJdO-9rY_dnEBQdXtHhFTu8QX7x-7W9-Jvnz-lua-naOqD0_3t9ATDRgz8</recordid><startdate>20150603</startdate><enddate>20150603</enddate><creator>Zhang, Liqin</creator><creator>Yang, Zunyi</creator><creator>Sefah, Kwame</creator><creator>Bradley, Kevin M</creator><creator>Hoshika, Shuichi</creator><creator>Kim, Myong-Jung</creator><creator>Kim, Hyo-Joong</creator><creator>Zhu, Guizhi</creator><creator>Jiménez, Elizabeth</creator><creator>Cansiz, Sena</creator><creator>Teng, I-Ting</creator><creator>Champanhac, Carole</creator><creator>McLendon, Christopher</creator><creator>Liu, Chen</creator><creator>Zhang, Wen</creator><creator>Gerloff, Dietlind L</creator><creator>Huang, Zhen</creator><creator>Tan, Weihong</creator><creator>Benner, Steven A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150603</creationdate><title>Evolution of Functional Six-Nucleotide DNA</title><author>Zhang, Liqin ; Yang, Zunyi ; Sefah, Kwame ; Bradley, Kevin M ; Hoshika, Shuichi ; Kim, Myong-Jung ; Kim, Hyo-Joong ; Zhu, Guizhi ; Jiménez, Elizabeth ; Cansiz, Sena ; Teng, I-Ting ; Champanhac, Carole ; McLendon, Christopher ; Liu, Chen ; Zhang, Wen ; Gerloff, Dietlind L ; Huang, Zhen ; Tan, Weihong ; Benner, Steven A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>DNA - chemical synthesis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Gene Library</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liqin</creatorcontrib><creatorcontrib>Yang, Zunyi</creatorcontrib><creatorcontrib>Sefah, Kwame</creatorcontrib><creatorcontrib>Bradley, Kevin M</creatorcontrib><creatorcontrib>Hoshika, Shuichi</creatorcontrib><creatorcontrib>Kim, Myong-Jung</creatorcontrib><creatorcontrib>Kim, Hyo-Joong</creatorcontrib><creatorcontrib>Zhu, Guizhi</creatorcontrib><creatorcontrib>Jiménez, Elizabeth</creatorcontrib><creatorcontrib>Cansiz, Sena</creatorcontrib><creatorcontrib>Teng, I-Ting</creatorcontrib><creatorcontrib>Champanhac, Carole</creatorcontrib><creatorcontrib>McLendon, Christopher</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Gerloff, Dietlind L</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><creatorcontrib>Benner, Steven A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liqin</au><au>Yang, Zunyi</au><au>Sefah, Kwame</au><au>Bradley, Kevin M</au><au>Hoshika, Shuichi</au><au>Kim, Myong-Jung</au><au>Kim, Hyo-Joong</au><au>Zhu, Guizhi</au><au>Jiménez, Elizabeth</au><au>Cansiz, Sena</au><au>Teng, I-Ting</au><au>Champanhac, Carole</au><au>McLendon, Christopher</au><au>Liu, Chen</au><au>Zhang, Wen</au><au>Gerloff, Dietlind L</au><au>Huang, Zhen</au><au>Tan, Weihong</au><au>Benner, Steven A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Functional Six-Nucleotide DNA</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-06-03</date><risdate>2015</risdate><volume>137</volume><issue>21</issue><spage>6734</spage><epage>6737</epage><pages>6734-6737</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25966323</pmid><doi>10.1021/jacs.5b02251</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-06, Vol.137 (21), p.6734-6737 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500535 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | DNA - chemical synthesis DNA - chemistry DNA - genetics Gene Library Hep G2 Cells Humans Models, Molecular Polymerase Chain Reaction |
title | Evolution of Functional Six-Nucleotide DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Functional%20Six-Nucleotide%20DNA&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Liqin&rft.date=2015-06-03&rft.volume=137&rft.issue=21&rft.spage=6734&rft.epage=6737&rft.pages=6734-6737&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b02251&rft_dat=%3Cproquest_pubme%3E1686065944%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1686065944&rft_id=info:pmid/25966323&rfr_iscdi=true |