Loading…

Evolution of Functional Six-Nucleotide DNA

Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups no...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2015-06, Vol.137 (21), p.6734-6737
Main Authors: Zhang, Liqin, Yang, Zunyi, Sefah, Kwame, Bradley, Kevin M, Hoshika, Shuichi, Kim, Myong-Jung, Kim, Hyo-Joong, Zhu, Guizhi, Jiménez, Elizabeth, Cansiz, Sena, Teng, I-Ting, Champanhac, Carole, McLendon, Christopher, Liu, Chen, Zhang, Wen, Gerloff, Dietlind L, Huang, Zhen, Tan, Weihong, Benner, Steven A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3
cites cdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3
container_end_page 6737
container_issue 21
container_start_page 6734
container_title Journal of the American Chemical Society
container_volume 137
creator Zhang, Liqin
Yang, Zunyi
Sefah, Kwame
Bradley, Kevin M
Hoshika, Shuichi
Kim, Myong-Jung
Kim, Hyo-Joong
Zhu, Guizhi
Jiménez, Elizabeth
Cansiz, Sena
Teng, I-Ting
Champanhac, Carole
McLendon, Christopher
Liu, Chen
Zhang, Wen
Gerloff, Dietlind L
Huang, Zhen
Tan, Weihong
Benner, Steven A
description Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2­(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo­[1,2-a]-1,3,5-triazin-4­(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.
doi_str_mv 10.1021/jacs.5b02251
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1686065944</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK3ePEuOUkzd7yQXodRWhVIP6nnZ3exqSpqt2aTov3dDa1XwMh_MO-8MDwDnCI4QxOh6KbUfMQUxZugA9BHDMGYI80PQhxDiOEk56YET75ehpThFx6CHWcY5waQPhtONK9umcFXkbDRrK93Vsoyeio940erSuKbITXS7GJ-CIytLb852eQBeZtPnyX08f7x7mIznsaQoaWJKKLVUJpjmnGGdQWZNriUlSuVZYlOsEplDi5VONM1spmyW4_AYV0QzEuIA3Gx9161ahVVTNbUsxbouVrL-FE4W4u-kKt7Eq9sIyiBkhAWDy51B7d5b4xuxKrw2ZSkr41ovEE855CyjNEivtlJdO-9rY_dnEBQdXtHhFTu8QX7x-7W9-Jvnz-lua-naOqD0_3t9ATDRgz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686065944</pqid></control><display><type>article</type><title>Evolution of Functional Six-Nucleotide DNA</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Liqin ; Yang, Zunyi ; Sefah, Kwame ; Bradley, Kevin M ; Hoshika, Shuichi ; Kim, Myong-Jung ; Kim, Hyo-Joong ; Zhu, Guizhi ; Jiménez, Elizabeth ; Cansiz, Sena ; Teng, I-Ting ; Champanhac, Carole ; McLendon, Christopher ; Liu, Chen ; Zhang, Wen ; Gerloff, Dietlind L ; Huang, Zhen ; Tan, Weihong ; Benner, Steven A</creator><creatorcontrib>Zhang, Liqin ; Yang, Zunyi ; Sefah, Kwame ; Bradley, Kevin M ; Hoshika, Shuichi ; Kim, Myong-Jung ; Kim, Hyo-Joong ; Zhu, Guizhi ; Jiménez, Elizabeth ; Cansiz, Sena ; Teng, I-Ting ; Champanhac, Carole ; McLendon, Christopher ; Liu, Chen ; Zhang, Wen ; Gerloff, Dietlind L ; Huang, Zhen ; Tan, Weihong ; Benner, Steven A</creatorcontrib><description>Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2­(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo­[1,2-a]-1,3,5-triazin-4­(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b02251</identifier><identifier>PMID: 25966323</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - chemical synthesis ; DNA - chemistry ; DNA - genetics ; Gene Library ; Hep G2 Cells ; Humans ; Models, Molecular ; Polymerase Chain Reaction</subject><ispartof>Journal of the American Chemical Society, 2015-06, Vol.137 (21), p.6734-6737</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</citedby><cites>FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25966323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Liqin</creatorcontrib><creatorcontrib>Yang, Zunyi</creatorcontrib><creatorcontrib>Sefah, Kwame</creatorcontrib><creatorcontrib>Bradley, Kevin M</creatorcontrib><creatorcontrib>Hoshika, Shuichi</creatorcontrib><creatorcontrib>Kim, Myong-Jung</creatorcontrib><creatorcontrib>Kim, Hyo-Joong</creatorcontrib><creatorcontrib>Zhu, Guizhi</creatorcontrib><creatorcontrib>Jiménez, Elizabeth</creatorcontrib><creatorcontrib>Cansiz, Sena</creatorcontrib><creatorcontrib>Teng, I-Ting</creatorcontrib><creatorcontrib>Champanhac, Carole</creatorcontrib><creatorcontrib>McLendon, Christopher</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Gerloff, Dietlind L</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><creatorcontrib>Benner, Steven A</creatorcontrib><title>Evolution of Functional Six-Nucleotide DNA</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2­(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo­[1,2-a]-1,3,5-triazin-4­(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.</description><subject>DNA - chemical synthesis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Gene Library</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Polymerase Chain Reaction</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbK3ePEuOUkzd7yQXodRWhVIP6nnZ3exqSpqt2aTov3dDa1XwMh_MO-8MDwDnCI4QxOh6KbUfMQUxZugA9BHDMGYI80PQhxDiOEk56YET75ehpThFx6CHWcY5waQPhtONK9umcFXkbDRrK93Vsoyeio940erSuKbITXS7GJ-CIytLb852eQBeZtPnyX08f7x7mIznsaQoaWJKKLVUJpjmnGGdQWZNriUlSuVZYlOsEplDi5VONM1spmyW4_AYV0QzEuIA3Gx9161ahVVTNbUsxbouVrL-FE4W4u-kKt7Eq9sIyiBkhAWDy51B7d5b4xuxKrw2ZSkr41ovEE855CyjNEivtlJdO-9rY_dnEBQdXtHhFTu8QX7x-7W9-Jvnz-lua-naOqD0_3t9ATDRgz8</recordid><startdate>20150603</startdate><enddate>20150603</enddate><creator>Zhang, Liqin</creator><creator>Yang, Zunyi</creator><creator>Sefah, Kwame</creator><creator>Bradley, Kevin M</creator><creator>Hoshika, Shuichi</creator><creator>Kim, Myong-Jung</creator><creator>Kim, Hyo-Joong</creator><creator>Zhu, Guizhi</creator><creator>Jiménez, Elizabeth</creator><creator>Cansiz, Sena</creator><creator>Teng, I-Ting</creator><creator>Champanhac, Carole</creator><creator>McLendon, Christopher</creator><creator>Liu, Chen</creator><creator>Zhang, Wen</creator><creator>Gerloff, Dietlind L</creator><creator>Huang, Zhen</creator><creator>Tan, Weihong</creator><creator>Benner, Steven A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150603</creationdate><title>Evolution of Functional Six-Nucleotide DNA</title><author>Zhang, Liqin ; Yang, Zunyi ; Sefah, Kwame ; Bradley, Kevin M ; Hoshika, Shuichi ; Kim, Myong-Jung ; Kim, Hyo-Joong ; Zhu, Guizhi ; Jiménez, Elizabeth ; Cansiz, Sena ; Teng, I-Ting ; Champanhac, Carole ; McLendon, Christopher ; Liu, Chen ; Zhang, Wen ; Gerloff, Dietlind L ; Huang, Zhen ; Tan, Weihong ; Benner, Steven A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>DNA - chemical synthesis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Gene Library</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liqin</creatorcontrib><creatorcontrib>Yang, Zunyi</creatorcontrib><creatorcontrib>Sefah, Kwame</creatorcontrib><creatorcontrib>Bradley, Kevin M</creatorcontrib><creatorcontrib>Hoshika, Shuichi</creatorcontrib><creatorcontrib>Kim, Myong-Jung</creatorcontrib><creatorcontrib>Kim, Hyo-Joong</creatorcontrib><creatorcontrib>Zhu, Guizhi</creatorcontrib><creatorcontrib>Jiménez, Elizabeth</creatorcontrib><creatorcontrib>Cansiz, Sena</creatorcontrib><creatorcontrib>Teng, I-Ting</creatorcontrib><creatorcontrib>Champanhac, Carole</creatorcontrib><creatorcontrib>McLendon, Christopher</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Gerloff, Dietlind L</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><creatorcontrib>Benner, Steven A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liqin</au><au>Yang, Zunyi</au><au>Sefah, Kwame</au><au>Bradley, Kevin M</au><au>Hoshika, Shuichi</au><au>Kim, Myong-Jung</au><au>Kim, Hyo-Joong</au><au>Zhu, Guizhi</au><au>Jiménez, Elizabeth</au><au>Cansiz, Sena</au><au>Teng, I-Ting</au><au>Champanhac, Carole</au><au>McLendon, Christopher</au><au>Liu, Chen</au><au>Zhang, Wen</au><au>Gerloff, Dietlind L</au><au>Huang, Zhen</au><au>Tan, Weihong</au><au>Benner, Steven A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Functional Six-Nucleotide DNA</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-06-03</date><risdate>2015</risdate><volume>137</volume><issue>21</issue><spage>6734</spage><epage>6737</epage><pages>6734-6737</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribo-furanosyl)-2­(1H)-pyridone and 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)-imidazo­[1,2-a]-1,3,5-triazin-4­(8H)-one). These are designed to pair via complete Watson–Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25966323</pmid><doi>10.1021/jacs.5b02251</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2015-06, Vol.137 (21), p.6734-6737
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4500535
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects DNA - chemical synthesis
DNA - chemistry
DNA - genetics
Gene Library
Hep G2 Cells
Humans
Models, Molecular
Polymerase Chain Reaction
title Evolution of Functional Six-Nucleotide DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Functional%20Six-Nucleotide%20DNA&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Liqin&rft.date=2015-06-03&rft.volume=137&rft.issue=21&rft.spage=6734&rft.epage=6737&rft.pages=6734-6737&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b02251&rft_dat=%3Cproquest_pubme%3E1686065944%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-4344f4a724d652c905fedca43bbd97f82b7ad0f2bc7c49f9bf9d20426b3c536b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1686065944&rft_id=info:pmid/25966323&rfr_iscdi=true