Loading…
Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection
Abstract Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secon...
Saved in:
Published in: | G3 : genes - genomes - genetics 2015-05, Vol.5 (7), p.1403-1413 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-256d31367647226b194090854ac485914087c4c9de97bb6549407e10f20e2ca03 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-256d31367647226b194090854ac485914087c4c9de97bb6549407e10f20e2ca03 |
container_end_page | 1413 |
container_issue | 7 |
container_start_page | 1403 |
container_title | G3 : genes - genomes - genetics |
container_volume | 5 |
creator | Leal-Bertioli, Soraya C M Cavalcante, Uiara Gouvea, Ediene G Ballén-Taborda, Carolina Shirasawa, Kenta Guimarães, Patrícia M Jackson, Scott A Bertioli, David J Moretzsohn, Márcio C |
description | Abstract
Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secondary gene pool is a source of much stronger resistance alleles. Wild species, however, have undesirable agronomic traits that are a disincentive to their use in breeding. The identification of genomic regions that harbor disease resistance in wild species is the first step in the implementation of marker-assisted selection that can speed the introgression of wild disease resistances and the elimination of linkage drag. In this work, we identify genome regions that control different components of rust resistance in a recombinant inbred line population developed from a cross between two Arachis species, the susceptible most probable B genome ancestor of cultivated peanut, Arachis ipaënsis, and an accession of its closest relative, Arachis magna, which is resistant to rust. Quantitative trait loci for several components of resistance were placed in the same position on linkage group B08. Single-nucleotide polymorphism Kompetitive allele-specific polymerase chain reaction markers for rust resistance region were designed and validated for marker function in both diploid and tetraploid contexts. |
doi_str_mv | 10.1534/g3.115.018796 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4502374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1534/g3.115.018796</oup_id><sourcerecordid>1697212432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-256d31367647226b194090854ac485914087c4c9de97bb6549407e10f20e2ca03</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EolXpkSvykUu2_p_kUmlVCq1YRGmLOFpeZ7LrktipnVTqB-n3xUtKKSfmMiPN0-896SH0lpIFlVwcbfiCUrkgtCpr9QLtM6pIQSuuXj6799BhSjckj5RKCfUa7TFZCy4Z3UcP5w340bXOmtEFj0OLv12vEm5DxJdTGvElJJdG4y1g5_G4BXwBxk8j_uG6Bl8NYB0kvIzGbl3Cvdl4g41vfis_wB10Yeizww78eXl1gb-Y-BPibDDfxTLtLCDToAO7i_EGvWpNl-DwcR-g7x9Pr0_OitXXT-cny1VhBSNjwaRqOOWqVKJkTK1pLUhNKimMFZWsqSBVaYWtG6jL9VpJkf8lUNIyAswawg_Q8cwdpnUPjc1Bo-n0EF1v4r0Oxul_P95t9SbcaSEJ46XIgPePgBhuJ0ij7l2y0HXGQ5iSpqouGWWCsywtZqmNIaUI7ZMNJXrXpt5wndvUc5tZ_-55tif1n-7-eodp-A_rFzyUprw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697212432</pqid></control><display><type>article</type><title>Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><creator>Leal-Bertioli, Soraya C M ; Cavalcante, Uiara ; Gouvea, Ediene G ; Ballén-Taborda, Carolina ; Shirasawa, Kenta ; Guimarães, Patrícia M ; Jackson, Scott A ; Bertioli, David J ; Moretzsohn, Márcio C</creator><creatorcontrib>Leal-Bertioli, Soraya C M ; Cavalcante, Uiara ; Gouvea, Ediene G ; Ballén-Taborda, Carolina ; Shirasawa, Kenta ; Guimarães, Patrícia M ; Jackson, Scott A ; Bertioli, David J ; Moretzsohn, Márcio C</creatorcontrib><description>Abstract
Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secondary gene pool is a source of much stronger resistance alleles. Wild species, however, have undesirable agronomic traits that are a disincentive to their use in breeding. The identification of genomic regions that harbor disease resistance in wild species is the first step in the implementation of marker-assisted selection that can speed the introgression of wild disease resistances and the elimination of linkage drag. In this work, we identify genome regions that control different components of rust resistance in a recombinant inbred line population developed from a cross between two Arachis species, the susceptible most probable B genome ancestor of cultivated peanut, Arachis ipaënsis, and an accession of its closest relative, Arachis magna, which is resistant to rust. Quantitative trait loci for several components of resistance were placed in the same position on linkage group B08. Single-nucleotide polymorphism Kompetitive allele-specific polymerase chain reaction markers for rust resistance region were designed and validated for marker function in both diploid and tetraploid contexts.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1534/g3.115.018796</identifier><identifier>PMID: 25943521</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alleles ; Arachis - genetics ; Base Sequence ; Breeding ; Chromosome Mapping ; Disease Resistance - genetics ; DNA, Plant - isolation & purification ; DNA, Plant - metabolism ; Genetic Linkage ; Genetic Markers - genetics ; Genome, Plant ; Investigations ; Microsatellite Repeats ; Phenotype ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Sequence Analysis, DNA ; Species Specificity ; Tetraploidy</subject><ispartof>G3 : genes - genomes - genetics, 2015-05, Vol.5 (7), p.1403-1413</ispartof><rights>2015 Leal-Bertioli et al. 2015</rights><rights>Copyright © 2015 Leal-Bertioli et al.</rights><rights>Copyright © 2015 Leal-Bertioli 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-256d31367647226b194090854ac485914087c4c9de97bb6549407e10f20e2ca03</citedby><cites>FETCH-LOGICAL-c420t-256d31367647226b194090854ac485914087c4c9de97bb6549407e10f20e2ca03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502374/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502374/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25943521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leal-Bertioli, Soraya C M</creatorcontrib><creatorcontrib>Cavalcante, Uiara</creatorcontrib><creatorcontrib>Gouvea, Ediene G</creatorcontrib><creatorcontrib>Ballén-Taborda, Carolina</creatorcontrib><creatorcontrib>Shirasawa, Kenta</creatorcontrib><creatorcontrib>Guimarães, Patrícia M</creatorcontrib><creatorcontrib>Jackson, Scott A</creatorcontrib><creatorcontrib>Bertioli, David J</creatorcontrib><creatorcontrib>Moretzsohn, Márcio C</creatorcontrib><title>Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection</title><title>G3 : genes - genomes - genetics</title><addtitle>G3 (Bethesda)</addtitle><description>Abstract
Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secondary gene pool is a source of much stronger resistance alleles. Wild species, however, have undesirable agronomic traits that are a disincentive to their use in breeding. The identification of genomic regions that harbor disease resistance in wild species is the first step in the implementation of marker-assisted selection that can speed the introgression of wild disease resistances and the elimination of linkage drag. In this work, we identify genome regions that control different components of rust resistance in a recombinant inbred line population developed from a cross between two Arachis species, the susceptible most probable B genome ancestor of cultivated peanut, Arachis ipaënsis, and an accession of its closest relative, Arachis magna, which is resistant to rust. Quantitative trait loci for several components of resistance were placed in the same position on linkage group B08. Single-nucleotide polymorphism Kompetitive allele-specific polymerase chain reaction markers for rust resistance region were designed and validated for marker function in both diploid and tetraploid contexts.</description><subject>Alleles</subject><subject>Arachis - genetics</subject><subject>Base Sequence</subject><subject>Breeding</subject><subject>Chromosome Mapping</subject><subject>Disease Resistance - genetics</subject><subject>DNA, Plant - isolation & purification</subject><subject>DNA, Plant - metabolism</subject><subject>Genetic Linkage</subject><subject>Genetic Markers - genetics</subject><subject>Genome, Plant</subject><subject>Investigations</subject><subject>Microsatellite Repeats</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>Sequence Analysis, DNA</subject><subject>Species Specificity</subject><subject>Tetraploidy</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EolXpkSvykUu2_p_kUmlVCq1YRGmLOFpeZ7LrktipnVTqB-n3xUtKKSfmMiPN0-896SH0lpIFlVwcbfiCUrkgtCpr9QLtM6pIQSuuXj6799BhSjckj5RKCfUa7TFZCy4Z3UcP5w340bXOmtEFj0OLv12vEm5DxJdTGvElJJdG4y1g5_G4BXwBxk8j_uG6Bl8NYB0kvIzGbl3Cvdl4g41vfis_wB10Yeizww78eXl1gb-Y-BPibDDfxTLtLCDToAO7i_EGvWpNl-DwcR-g7x9Pr0_OitXXT-cny1VhBSNjwaRqOOWqVKJkTK1pLUhNKimMFZWsqSBVaYWtG6jL9VpJkf8lUNIyAswawg_Q8cwdpnUPjc1Bo-n0EF1v4r0Oxul_P95t9SbcaSEJ46XIgPePgBhuJ0ij7l2y0HXGQ5iSpqouGWWCsywtZqmNIaUI7ZMNJXrXpt5wndvUc5tZ_-55tif1n-7-eodp-A_rFzyUprw</recordid><startdate>20150505</startdate><enddate>20150505</enddate><creator>Leal-Bertioli, Soraya C M</creator><creator>Cavalcante, Uiara</creator><creator>Gouvea, Ediene G</creator><creator>Ballén-Taborda, Carolina</creator><creator>Shirasawa, Kenta</creator><creator>Guimarães, Patrícia M</creator><creator>Jackson, Scott A</creator><creator>Bertioli, David J</creator><creator>Moretzsohn, Márcio C</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150505</creationdate><title>Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection</title><author>Leal-Bertioli, Soraya C M ; Cavalcante, Uiara ; Gouvea, Ediene G ; Ballén-Taborda, Carolina ; Shirasawa, Kenta ; Guimarães, Patrícia M ; Jackson, Scott A ; Bertioli, David J ; Moretzsohn, Márcio C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-256d31367647226b194090854ac485914087c4c9de97bb6549407e10f20e2ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>Arachis - genetics</topic><topic>Base Sequence</topic><topic>Breeding</topic><topic>Chromosome Mapping</topic><topic>Disease Resistance - genetics</topic><topic>DNA, Plant - isolation & purification</topic><topic>DNA, Plant - metabolism</topic><topic>Genetic Linkage</topic><topic>Genetic Markers - genetics</topic><topic>Genome, Plant</topic><topic>Investigations</topic><topic>Microsatellite Repeats</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>Sequence Analysis, DNA</topic><topic>Species Specificity</topic><topic>Tetraploidy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leal-Bertioli, Soraya C M</creatorcontrib><creatorcontrib>Cavalcante, Uiara</creatorcontrib><creatorcontrib>Gouvea, Ediene G</creatorcontrib><creatorcontrib>Ballén-Taborda, Carolina</creatorcontrib><creatorcontrib>Shirasawa, Kenta</creatorcontrib><creatorcontrib>Guimarães, Patrícia M</creatorcontrib><creatorcontrib>Jackson, Scott A</creatorcontrib><creatorcontrib>Bertioli, David J</creatorcontrib><creatorcontrib>Moretzsohn, Márcio C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leal-Bertioli, Soraya C M</au><au>Cavalcante, Uiara</au><au>Gouvea, Ediene G</au><au>Ballén-Taborda, Carolina</au><au>Shirasawa, Kenta</au><au>Guimarães, Patrícia M</au><au>Jackson, Scott A</au><au>Bertioli, David J</au><au>Moretzsohn, Márcio C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><addtitle>G3 (Bethesda)</addtitle><date>2015-05-05</date><risdate>2015</risdate><volume>5</volume><issue>7</issue><spage>1403</spage><epage>1413</epage><pages>1403-1413</pages><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Abstract
Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secondary gene pool is a source of much stronger resistance alleles. Wild species, however, have undesirable agronomic traits that are a disincentive to their use in breeding. The identification of genomic regions that harbor disease resistance in wild species is the first step in the implementation of marker-assisted selection that can speed the introgression of wild disease resistances and the elimination of linkage drag. In this work, we identify genome regions that control different components of rust resistance in a recombinant inbred line population developed from a cross between two Arachis species, the susceptible most probable B genome ancestor of cultivated peanut, Arachis ipaënsis, and an accession of its closest relative, Arachis magna, which is resistant to rust. Quantitative trait loci for several components of resistance were placed in the same position on linkage group B08. Single-nucleotide polymorphism Kompetitive allele-specific polymerase chain reaction markers for rust resistance region were designed and validated for marker function in both diploid and tetraploid contexts.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25943521</pmid><doi>10.1534/g3.115.018796</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-1836 |
ispartof | G3 : genes - genomes - genetics, 2015-05, Vol.5 (7), p.1403-1413 |
issn | 2160-1836 2160-1836 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4502374 |
source | Open Access: Oxford University Press Open Journals; PubMed Central |
subjects | Alleles Arachis - genetics Base Sequence Breeding Chromosome Mapping Disease Resistance - genetics DNA, Plant - isolation & purification DNA, Plant - metabolism Genetic Linkage Genetic Markers - genetics Genome, Plant Investigations Microsatellite Repeats Phenotype Polymorphism, Single Nucleotide Quantitative Trait Loci Sequence Analysis, DNA Species Specificity Tetraploidy |
title | Identification of QTLs for Rust Resistance in the Peanut Wild Species Arachis magna and the Development of KASP Markers for Marker-Assisted Selection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20QTLs%20for%20Rust%20Resistance%20in%20the%20Peanut%20Wild%20Species%20Arachis%20magna%20and%20the%20Development%20of%20KASP%20Markers%20for%20Marker-Assisted%20Selection&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Leal-Bertioli,%20Soraya%20C%20M&rft.date=2015-05-05&rft.volume=5&rft.issue=7&rft.spage=1403&rft.epage=1413&rft.pages=1403-1413&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1534/g3.115.018796&rft_dat=%3Cproquest_pubme%3E1697212432%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-256d31367647226b194090854ac485914087c4c9de97bb6549407e10f20e2ca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697212432&rft_id=info:pmid/25943521&rft_oup_id=10.1534/g3.115.018796&rfr_iscdi=true |