Loading…

Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity

Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discr...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2015-06, Vol.161 (7), p.1606-1618
Main Authors: Nedialkova, Danny D., Leidel, Sebastian A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323
cites cdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323
container_end_page 1618
container_issue 7
container_start_page 1606
container_title Cell
container_volume 161
creator Nedialkova, Danny D.
Leidel, Sebastian A.
description Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity. [Display omitted] •tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity.
doi_str_mv 10.1016/j.cell.2015.05.022
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4503807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867415005711</els_id><sourcerecordid>2000243900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</originalsourceid><addsrcrecordid>eNqFUU1r3DAQFaWh2aT9Az0UH3vxdjSWJRtKISxpE8hHCempByHLUqrFtraSdiH99ZW7SUgvLcwwYubNQ_MeIW8pLClQ_mG91GYYlgi0XkIOxBdkQaEVJaMCX5IFQItlwwU7JEcxrgGgqev6FTlEDjUCEwvy_XqT3Oh-qeT8VHhbrHyfH7dBTXHYN29UMrHYOVWkm6uT4tL3zjr9ZxaLS-WmlDMWX4NPxo-mOJ-SuQsu3b8mB1YN0bx5qMfk2-fT29VZeXH95Xx1clFqLqpUojGaM9sxACWErVpe2Zp22PDeIhcdWmE5iB7rthGW2tb2usm9hkLHmwqrY_Jpz7vZdqPptZlSUIPcBDeqcC-9cvLvyeR-yDu_k6yGqgGRCd4_EAT_c2tikqOLs7ZqMn4bJWblkFUtwH-hlLeAlLUNy1DcQ3XwMQZjn35EQc4GyrWcN-VsoIQcON_y7vktTyuPjmXAxz3AZEV3zgQZtTOTNr0LRifZe_cv_t9n262m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690214984</pqid></control><display><type>article</type><title>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</title><source>ScienceDirect Journals</source><creator>Nedialkova, Danny D. ; Leidel, Sebastian A.</creator><creatorcontrib>Nedialkova, Danny D. ; Leidel, Sebastian A.</creatorcontrib><description>Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity. [Display omitted] •tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2015.05.022</identifier><identifier>PMID: 26052047</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Codon ; codons ; gene expression ; homeostasis ; messenger RNA ; Protein Aggregates ; Protein Biosynthesis ; proteome ; ribosomes ; Ribosomes - metabolism ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Stress, Physiological ; transfer RNA ; translation (genetics) ; uridine ; Uridine - genetics</subject><ispartof>Cell, 2015-06, Vol.161 (7), p.1606-1618</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</citedby><cites>FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867415005711$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3535,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26052047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nedialkova, Danny D.</creatorcontrib><creatorcontrib>Leidel, Sebastian A.</creatorcontrib><title>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</title><title>Cell</title><addtitle>Cell</addtitle><description>Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity. [Display omitted] •tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity.</description><subject>Animals</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Codon</subject><subject>codons</subject><subject>gene expression</subject><subject>homeostasis</subject><subject>messenger RNA</subject><subject>Protein Aggregates</subject><subject>Protein Biosynthesis</subject><subject>proteome</subject><subject>ribosomes</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Stress, Physiological</subject><subject>transfer RNA</subject><subject>translation (genetics)</subject><subject>uridine</subject><subject>Uridine - genetics</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAQFaWh2aT9Az0UH3vxdjSWJRtKISxpE8hHCempByHLUqrFtraSdiH99ZW7SUgvLcwwYubNQ_MeIW8pLClQ_mG91GYYlgi0XkIOxBdkQaEVJaMCX5IFQItlwwU7JEcxrgGgqev6FTlEDjUCEwvy_XqT3Oh-qeT8VHhbrHyfH7dBTXHYN29UMrHYOVWkm6uT4tL3zjr9ZxaLS-WmlDMWX4NPxo-mOJ-SuQsu3b8mB1YN0bx5qMfk2-fT29VZeXH95Xx1clFqLqpUojGaM9sxACWErVpe2Zp22PDeIhcdWmE5iB7rthGW2tb2usm9hkLHmwqrY_Jpz7vZdqPptZlSUIPcBDeqcC-9cvLvyeR-yDu_k6yGqgGRCd4_EAT_c2tikqOLs7ZqMn4bJWblkFUtwH-hlLeAlLUNy1DcQ3XwMQZjn35EQc4GyrWcN-VsoIQcON_y7vktTyuPjmXAxz3AZEV3zgQZtTOTNr0LRifZe_cv_t9n262m</recordid><startdate>20150618</startdate><enddate>20150618</enddate><creator>Nedialkova, Danny D.</creator><creator>Leidel, Sebastian A.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150618</creationdate><title>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</title><author>Nedialkova, Danny D. ; Leidel, Sebastian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Codon</topic><topic>codons</topic><topic>gene expression</topic><topic>homeostasis</topic><topic>messenger RNA</topic><topic>Protein Aggregates</topic><topic>Protein Biosynthesis</topic><topic>proteome</topic><topic>ribosomes</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Stress, Physiological</topic><topic>transfer RNA</topic><topic>translation (genetics)</topic><topic>uridine</topic><topic>Uridine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nedialkova, Danny D.</creatorcontrib><creatorcontrib>Leidel, Sebastian A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nedialkova, Danny D.</au><au>Leidel, Sebastian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2015-06-18</date><risdate>2015</risdate><volume>161</volume><issue>7</issue><spage>1606</spage><epage>1618</epage><pages>1606-1618</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity. [Display omitted] •tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26052047</pmid><doi>10.1016/j.cell.2015.05.022</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2015-06, Vol.161 (7), p.1606-1618
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4503807
source ScienceDirect Journals
subjects Animals
Caenorhabditis elegans - cytology
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Codon
codons
gene expression
homeostasis
messenger RNA
Protein Aggregates
Protein Biosynthesis
proteome
ribosomes
Ribosomes - metabolism
RNA, Transfer - metabolism
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Stress, Physiological
transfer RNA
translation (genetics)
uridine
Uridine - genetics
title Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Codon%20Translation%20Rates%20via%20tRNA%20Modifications%20Maintains%20Proteome%20Integrity&rft.jtitle=Cell&rft.au=Nedialkova,%20Danny%C2%A0D.&rft.date=2015-06-18&rft.volume=161&rft.issue=7&rft.spage=1606&rft.epage=1618&rft.pages=1606-1618&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2015.05.022&rft_dat=%3Cproquest_pubme%3E2000243900%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1690214984&rft_id=info:pmid/26052047&rfr_iscdi=true