Loading…
Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity
Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discr...
Saved in:
Published in: | Cell 2015-06, Vol.161 (7), p.1606-1618 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323 |
---|---|
cites | cdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323 |
container_end_page | 1618 |
container_issue | 7 |
container_start_page | 1606 |
container_title | Cell |
container_volume | 161 |
creator | Nedialkova, Danny D. Leidel, Sebastian A. |
description | Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity.
[Display omitted]
•tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression
Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity. |
doi_str_mv | 10.1016/j.cell.2015.05.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4503807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867415005711</els_id><sourcerecordid>2000243900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</originalsourceid><addsrcrecordid>eNqFUU1r3DAQFaWh2aT9Az0UH3vxdjSWJRtKISxpE8hHCempByHLUqrFtraSdiH99ZW7SUgvLcwwYubNQ_MeIW8pLClQ_mG91GYYlgi0XkIOxBdkQaEVJaMCX5IFQItlwwU7JEcxrgGgqev6FTlEDjUCEwvy_XqT3Oh-qeT8VHhbrHyfH7dBTXHYN29UMrHYOVWkm6uT4tL3zjr9ZxaLS-WmlDMWX4NPxo-mOJ-SuQsu3b8mB1YN0bx5qMfk2-fT29VZeXH95Xx1clFqLqpUojGaM9sxACWErVpe2Zp22PDeIhcdWmE5iB7rthGW2tb2usm9hkLHmwqrY_Jpz7vZdqPptZlSUIPcBDeqcC-9cvLvyeR-yDu_k6yGqgGRCd4_EAT_c2tikqOLs7ZqMn4bJWblkFUtwH-hlLeAlLUNy1DcQ3XwMQZjn35EQc4GyrWcN-VsoIQcON_y7vktTyuPjmXAxz3AZEV3zgQZtTOTNr0LRifZe_cv_t9n262m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690214984</pqid></control><display><type>article</type><title>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</title><source>ScienceDirect Journals</source><creator>Nedialkova, Danny D. ; Leidel, Sebastian A.</creator><creatorcontrib>Nedialkova, Danny D. ; Leidel, Sebastian A.</creatorcontrib><description>Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity.
[Display omitted]
•tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression
Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2015.05.022</identifier><identifier>PMID: 26052047</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Codon ; codons ; gene expression ; homeostasis ; messenger RNA ; Protein Aggregates ; Protein Biosynthesis ; proteome ; ribosomes ; Ribosomes - metabolism ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Stress, Physiological ; transfer RNA ; translation (genetics) ; uridine ; Uridine - genetics</subject><ispartof>Cell, 2015-06, Vol.161 (7), p.1606-1618</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</citedby><cites>FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867415005711$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3535,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26052047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nedialkova, Danny D.</creatorcontrib><creatorcontrib>Leidel, Sebastian A.</creatorcontrib><title>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</title><title>Cell</title><addtitle>Cell</addtitle><description>Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity.
[Display omitted]
•tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression
Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity.</description><subject>Animals</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Codon</subject><subject>codons</subject><subject>gene expression</subject><subject>homeostasis</subject><subject>messenger RNA</subject><subject>Protein Aggregates</subject><subject>Protein Biosynthesis</subject><subject>proteome</subject><subject>ribosomes</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Stress, Physiological</subject><subject>transfer RNA</subject><subject>translation (genetics)</subject><subject>uridine</subject><subject>Uridine - genetics</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAQFaWh2aT9Az0UH3vxdjSWJRtKISxpE8hHCempByHLUqrFtraSdiH99ZW7SUgvLcwwYubNQ_MeIW8pLClQ_mG91GYYlgi0XkIOxBdkQaEVJaMCX5IFQItlwwU7JEcxrgGgqev6FTlEDjUCEwvy_XqT3Oh-qeT8VHhbrHyfH7dBTXHYN29UMrHYOVWkm6uT4tL3zjr9ZxaLS-WmlDMWX4NPxo-mOJ-SuQsu3b8mB1YN0bx5qMfk2-fT29VZeXH95Xx1clFqLqpUojGaM9sxACWErVpe2Zp22PDeIhcdWmE5iB7rthGW2tb2usm9hkLHmwqrY_Jpz7vZdqPptZlSUIPcBDeqcC-9cvLvyeR-yDu_k6yGqgGRCd4_EAT_c2tikqOLs7ZqMn4bJWblkFUtwH-hlLeAlLUNy1DcQ3XwMQZjn35EQc4GyrWcN-VsoIQcON_y7vktTyuPjmXAxz3AZEV3zgQZtTOTNr0LRifZe_cv_t9n262m</recordid><startdate>20150618</startdate><enddate>20150618</enddate><creator>Nedialkova, Danny D.</creator><creator>Leidel, Sebastian A.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150618</creationdate><title>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</title><author>Nedialkova, Danny D. ; Leidel, Sebastian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Codon</topic><topic>codons</topic><topic>gene expression</topic><topic>homeostasis</topic><topic>messenger RNA</topic><topic>Protein Aggregates</topic><topic>Protein Biosynthesis</topic><topic>proteome</topic><topic>ribosomes</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Stress, Physiological</topic><topic>transfer RNA</topic><topic>translation (genetics)</topic><topic>uridine</topic><topic>Uridine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nedialkova, Danny D.</creatorcontrib><creatorcontrib>Leidel, Sebastian A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nedialkova, Danny D.</au><au>Leidel, Sebastian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2015-06-18</date><risdate>2015</risdate><volume>161</volume><issue>7</issue><spage>1606</spage><epage>1618</epage><pages>1606-1618</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity.
[Display omitted]
•tRNA anticodon modification loss slows translation at cognate codons in vivo•Codon-specific translational pausing triggers protein misfolding in yeast and worms•Codon translation rates and protein homeostasis are restored by tRNA overexpression
Optimal codon translation rates—ensured by the presence of nucleoside modifications in the tRNA anticodon—are critical for maintaining proteome integrity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26052047</pmid><doi>10.1016/j.cell.2015.05.022</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2015-06, Vol.161 (7), p.1606-1618 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4503807 |
source | ScienceDirect Journals |
subjects | Animals Caenorhabditis elegans - cytology Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Codon codons gene expression homeostasis messenger RNA Protein Aggregates Protein Biosynthesis proteome ribosomes Ribosomes - metabolism RNA, Transfer - metabolism Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Stress, Physiological transfer RNA translation (genetics) uridine Uridine - genetics |
title | Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Codon%20Translation%20Rates%20via%20tRNA%20Modifications%20Maintains%20Proteome%20Integrity&rft.jtitle=Cell&rft.au=Nedialkova,%20Danny%C2%A0D.&rft.date=2015-06-18&rft.volume=161&rft.issue=7&rft.spage=1606&rft.epage=1618&rft.pages=1606-1618&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2015.05.022&rft_dat=%3Cproquest_pubme%3E2000243900%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c673t-2eec64fb400a77f3963f51b286df267b2f7f607d25987f1f9fdc8f7f810b68323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1690214984&rft_id=info:pmid/26052047&rfr_iscdi=true |