Loading…

Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses

Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of pathology 2015-08, Vol.236 (4), p.421-432
Main Authors: Samarakoon, Rohan, Helo, Sevann, Dobberfuhl, Amy D, Khakoo, Nidah S, Falke, Lucas, Overstreet, Jessica M, Goldschmeding, Roel, Higgins, Paul J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3
cites cdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3
container_end_page 432
container_issue 4
container_start_page 421
container_title The Journal of pathology
container_volume 236
creator Samarakoon, Rohan
Helo, Sevann
Dobberfuhl, Amy D
Khakoo, Nidah S
Falke, Lucas
Overstreet, Jessica M
Goldschmeding, Roel
Higgins, Paul J
description Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/path.4538
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4509814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709176674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModlu98A9IwBt7MW0-J8mNsNbaitta6IrgTchkMjbr7GRMZrT7781-uKggeHUSzvO-nHNeAJ5hdIIRIqe9Ge5OGKfyAZhgpMpCSVU-BJPcIwVlWByAw5QWCCGlOH8MDgiXGFGGJiDMQkowNHAYl2GMMI19H11KIcKb-fk1dPebrw8d9B2MrjNtfizGuMrFD94MLsHbq-kbWkDT1bDntKhd77radQNsfBXD4G0Wpj50yaUn4FFj2uSe7uoR-Pj2fH52Wcw-XLw7m84KyzGTRWWZEE5S11AimakqgjGpGCKKUs5F5UgtKG-stUgYbiiqhLRGYt6okuCyoUfg1da3H6ulq22eJppW99EvTVzpYLz-s9P5O_0lfNeMIyUxywYvdwYxfBtdGvTSJ-va1nQujEljgRQWZSn-Ay2VRFSQjeuLv9BFvno-6oYSBEmEVaaOt5SNOZ3omv3cGOl14nqduF4nntnnvy-6J39FnIHTLfDDt271byd9M51f7iyLrcKnwd3vFSZ-1aWggutP1xeav1afr_At1e_pT-8HxSM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697208019</pqid></control><display><type>article</type><title>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</title><source>Wiley</source><creator>Samarakoon, Rohan ; Helo, Sevann ; Dobberfuhl, Amy D ; Khakoo, Nidah S ; Falke, Lucas ; Overstreet, Jessica M ; Goldschmeding, Roel ; Higgins, Paul J</creator><creatorcontrib>Samarakoon, Rohan ; Helo, Sevann ; Dobberfuhl, Amy D ; Khakoo, Nidah S ; Falke, Lucas ; Overstreet, Jessica M ; Goldschmeding, Roel ; Higgins, Paul J</creatorcontrib><description>Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4538</identifier><identifier>PMID: 25810340</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>AAN ; Akt ; Animals ; Apoptosis ; Aristolochic Acids ; Cell Cycle Checkpoints ; Cell Line ; Cell Proliferation ; CTGF ; Disease Models, Animal ; Enzyme Inhibitors - pharmacology ; Fibrosis ; Gene Expression Regulation ; Humans ; Kidney Diseases - chemically induced ; Kidney Diseases - enzymology ; Kidney Diseases - genetics ; Kidney Diseases - pathology ; Kidney Tubules - drug effects ; Kidney Tubules - enzymology ; Kidney Tubules - pathology ; Male ; Mice, Inbred C57BL ; p53 ; PAI-1 ; Plasminogen Activator Inhibitor 1 - metabolism ; PTEN ; PTEN Phosphohydrolase - antagonists &amp; inhibitors ; PTEN Phosphohydrolase - genetics ; PTEN Phosphohydrolase - metabolism ; renal fibrosis ; RNA Interference ; Signal Transduction ; SMAD3 ; Smad3 Protein - genetics ; Smad3 Protein - metabolism ; Streptozocin ; Transfection ; Transforming Growth Factor beta1 - metabolism ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Ureteral Obstruction - complications ; UUO</subject><ispartof>The Journal of pathology, 2015-08, Vol.236 (4), p.421-432</ispartof><rights>Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 Pathological Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</citedby><cites>FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25810340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samarakoon, Rohan</creatorcontrib><creatorcontrib>Helo, Sevann</creatorcontrib><creatorcontrib>Dobberfuhl, Amy D</creatorcontrib><creatorcontrib>Khakoo, Nidah S</creatorcontrib><creatorcontrib>Falke, Lucas</creatorcontrib><creatorcontrib>Overstreet, Jessica M</creatorcontrib><creatorcontrib>Goldschmeding, Roel</creatorcontrib><creatorcontrib>Higgins, Paul J</creatorcontrib><title>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><subject>AAN</subject><subject>Akt</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Aristolochic Acids</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>CTGF</subject><subject>Disease Models, Animal</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fibrosis</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Kidney Diseases - chemically induced</subject><subject>Kidney Diseases - enzymology</subject><subject>Kidney Diseases - genetics</subject><subject>Kidney Diseases - pathology</subject><subject>Kidney Tubules - drug effects</subject><subject>Kidney Tubules - enzymology</subject><subject>Kidney Tubules - pathology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>p53</subject><subject>PAI-1</subject><subject>Plasminogen Activator Inhibitor 1 - metabolism</subject><subject>PTEN</subject><subject>PTEN Phosphohydrolase - antagonists &amp; inhibitors</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>renal fibrosis</subject><subject>RNA Interference</subject><subject>Signal Transduction</subject><subject>SMAD3</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - metabolism</subject><subject>Streptozocin</subject><subject>Transfection</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Ureteral Obstruction - complications</subject><subject>UUO</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhoModlu98A9IwBt7MW0-J8mNsNbaitta6IrgTchkMjbr7GRMZrT7781-uKggeHUSzvO-nHNeAJ5hdIIRIqe9Ge5OGKfyAZhgpMpCSVU-BJPcIwVlWByAw5QWCCGlOH8MDgiXGFGGJiDMQkowNHAYl2GMMI19H11KIcKb-fk1dPebrw8d9B2MrjNtfizGuMrFD94MLsHbq-kbWkDT1bDntKhd77radQNsfBXD4G0Wpj50yaUn4FFj2uSe7uoR-Pj2fH52Wcw-XLw7m84KyzGTRWWZEE5S11AimakqgjGpGCKKUs5F5UgtKG-stUgYbiiqhLRGYt6okuCyoUfg1da3H6ulq22eJppW99EvTVzpYLz-s9P5O_0lfNeMIyUxywYvdwYxfBtdGvTSJ-va1nQujEljgRQWZSn-Ay2VRFSQjeuLv9BFvno-6oYSBEmEVaaOt5SNOZ3omv3cGOl14nqduF4nntnnvy-6J39FnIHTLfDDt271byd9M51f7iyLrcKnwd3vFSZ-1aWggutP1xeav1afr_At1e_pT-8HxSM</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Samarakoon, Rohan</creator><creator>Helo, Sevann</creator><creator>Dobberfuhl, Amy D</creator><creator>Khakoo, Nidah S</creator><creator>Falke, Lucas</creator><creator>Overstreet, Jessica M</creator><creator>Goldschmeding, Roel</creator><creator>Higgins, Paul J</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201508</creationdate><title>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</title><author>Samarakoon, Rohan ; Helo, Sevann ; Dobberfuhl, Amy D ; Khakoo, Nidah S ; Falke, Lucas ; Overstreet, Jessica M ; Goldschmeding, Roel ; Higgins, Paul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AAN</topic><topic>Akt</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Aristolochic Acids</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>CTGF</topic><topic>Disease Models, Animal</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fibrosis</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Kidney Diseases - chemically induced</topic><topic>Kidney Diseases - enzymology</topic><topic>Kidney Diseases - genetics</topic><topic>Kidney Diseases - pathology</topic><topic>Kidney Tubules - drug effects</topic><topic>Kidney Tubules - enzymology</topic><topic>Kidney Tubules - pathology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>p53</topic><topic>PAI-1</topic><topic>Plasminogen Activator Inhibitor 1 - metabolism</topic><topic>PTEN</topic><topic>PTEN Phosphohydrolase - antagonists &amp; inhibitors</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>renal fibrosis</topic><topic>RNA Interference</topic><topic>Signal Transduction</topic><topic>SMAD3</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - metabolism</topic><topic>Streptozocin</topic><topic>Transfection</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Ureteral Obstruction - complications</topic><topic>UUO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samarakoon, Rohan</creatorcontrib><creatorcontrib>Helo, Sevann</creatorcontrib><creatorcontrib>Dobberfuhl, Amy D</creatorcontrib><creatorcontrib>Khakoo, Nidah S</creatorcontrib><creatorcontrib>Falke, Lucas</creatorcontrib><creatorcontrib>Overstreet, Jessica M</creatorcontrib><creatorcontrib>Goldschmeding, Roel</creatorcontrib><creatorcontrib>Higgins, Paul J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samarakoon, Rohan</au><au>Helo, Sevann</au><au>Dobberfuhl, Amy D</au><au>Khakoo, Nidah S</au><au>Falke, Lucas</au><au>Overstreet, Jessica M</au><au>Goldschmeding, Roel</au><au>Higgins, Paul J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2015-08</date><risdate>2015</risdate><volume>236</volume><issue>4</issue><spage>421</spage><epage>432</epage><pages>421-432</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>25810340</pmid><doi>10.1002/path.4538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2015-08, Vol.236 (4), p.421-432
issn 0022-3417
1096-9896
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4509814
source Wiley
subjects AAN
Akt
Animals
Apoptosis
Aristolochic Acids
Cell Cycle Checkpoints
Cell Line
Cell Proliferation
CTGF
Disease Models, Animal
Enzyme Inhibitors - pharmacology
Fibrosis
Gene Expression Regulation
Humans
Kidney Diseases - chemically induced
Kidney Diseases - enzymology
Kidney Diseases - genetics
Kidney Diseases - pathology
Kidney Tubules - drug effects
Kidney Tubules - enzymology
Kidney Tubules - pathology
Male
Mice, Inbred C57BL
p53
PAI-1
Plasminogen Activator Inhibitor 1 - metabolism
PTEN
PTEN Phosphohydrolase - antagonists & inhibitors
PTEN Phosphohydrolase - genetics
PTEN Phosphohydrolase - metabolism
renal fibrosis
RNA Interference
Signal Transduction
SMAD3
Smad3 Protein - genetics
Smad3 Protein - metabolism
Streptozocin
Transfection
Transforming Growth Factor beta1 - metabolism
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Ureteral Obstruction - complications
UUO
title Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20tumour%20suppressor%20PTEN%20expression%20in%20renal%20injury%20initiates%20SMAD3-%20and%20p53-dependent%20fibrotic%20responses&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Samarakoon,%20Rohan&rft.date=2015-08&rft.volume=236&rft.issue=4&rft.spage=421&rft.epage=432&rft.pages=421-432&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4538&rft_dat=%3Cproquest_pubme%3E1709176674%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697208019&rft_id=info:pmid/25810340&rfr_iscdi=true