Loading…
Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses
Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in...
Saved in:
Published in: | The Journal of pathology 2015-08, Vol.236 (4), p.421-432 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3 |
container_end_page | 432 |
container_issue | 4 |
container_start_page | 421 |
container_title | The Journal of pathology |
container_volume | 236 |
creator | Samarakoon, Rohan Helo, Sevann Dobberfuhl, Amy D Khakoo, Nidah S Falke, Lucas Overstreet, Jessica M Goldschmeding, Roel Higgins, Paul J |
description | Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/path.4538 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4509814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709176674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModlu98A9IwBt7MW0-J8mNsNbaitta6IrgTchkMjbr7GRMZrT7781-uKggeHUSzvO-nHNeAJ5hdIIRIqe9Ge5OGKfyAZhgpMpCSVU-BJPcIwVlWByAw5QWCCGlOH8MDgiXGFGGJiDMQkowNHAYl2GMMI19H11KIcKb-fk1dPebrw8d9B2MrjNtfizGuMrFD94MLsHbq-kbWkDT1bDntKhd77radQNsfBXD4G0Wpj50yaUn4FFj2uSe7uoR-Pj2fH52Wcw-XLw7m84KyzGTRWWZEE5S11AimakqgjGpGCKKUs5F5UgtKG-stUgYbiiqhLRGYt6okuCyoUfg1da3H6ulq22eJppW99EvTVzpYLz-s9P5O_0lfNeMIyUxywYvdwYxfBtdGvTSJ-va1nQujEljgRQWZSn-Ay2VRFSQjeuLv9BFvno-6oYSBEmEVaaOt5SNOZ3omv3cGOl14nqduF4nntnnvy-6J39FnIHTLfDDt271byd9M51f7iyLrcKnwd3vFSZ-1aWggutP1xeav1afr_At1e_pT-8HxSM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697208019</pqid></control><display><type>article</type><title>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</title><source>Wiley</source><creator>Samarakoon, Rohan ; Helo, Sevann ; Dobberfuhl, Amy D ; Khakoo, Nidah S ; Falke, Lucas ; Overstreet, Jessica M ; Goldschmeding, Roel ; Higgins, Paul J</creator><creatorcontrib>Samarakoon, Rohan ; Helo, Sevann ; Dobberfuhl, Amy D ; Khakoo, Nidah S ; Falke, Lucas ; Overstreet, Jessica M ; Goldschmeding, Roel ; Higgins, Paul J</creatorcontrib><description>Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4538</identifier><identifier>PMID: 25810340</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>AAN ; Akt ; Animals ; Apoptosis ; Aristolochic Acids ; Cell Cycle Checkpoints ; Cell Line ; Cell Proliferation ; CTGF ; Disease Models, Animal ; Enzyme Inhibitors - pharmacology ; Fibrosis ; Gene Expression Regulation ; Humans ; Kidney Diseases - chemically induced ; Kidney Diseases - enzymology ; Kidney Diseases - genetics ; Kidney Diseases - pathology ; Kidney Tubules - drug effects ; Kidney Tubules - enzymology ; Kidney Tubules - pathology ; Male ; Mice, Inbred C57BL ; p53 ; PAI-1 ; Plasminogen Activator Inhibitor 1 - metabolism ; PTEN ; PTEN Phosphohydrolase - antagonists & inhibitors ; PTEN Phosphohydrolase - genetics ; PTEN Phosphohydrolase - metabolism ; renal fibrosis ; RNA Interference ; Signal Transduction ; SMAD3 ; Smad3 Protein - genetics ; Smad3 Protein - metabolism ; Streptozocin ; Transfection ; Transforming Growth Factor beta1 - metabolism ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Ureteral Obstruction - complications ; UUO</subject><ispartof>The Journal of pathology, 2015-08, Vol.236 (4), p.421-432</ispartof><rights>Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 Pathological Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</citedby><cites>FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25810340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samarakoon, Rohan</creatorcontrib><creatorcontrib>Helo, Sevann</creatorcontrib><creatorcontrib>Dobberfuhl, Amy D</creatorcontrib><creatorcontrib>Khakoo, Nidah S</creatorcontrib><creatorcontrib>Falke, Lucas</creatorcontrib><creatorcontrib>Overstreet, Jessica M</creatorcontrib><creatorcontrib>Goldschmeding, Roel</creatorcontrib><creatorcontrib>Higgins, Paul J</creatorcontrib><title>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><subject>AAN</subject><subject>Akt</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Aristolochic Acids</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>CTGF</subject><subject>Disease Models, Animal</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fibrosis</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Kidney Diseases - chemically induced</subject><subject>Kidney Diseases - enzymology</subject><subject>Kidney Diseases - genetics</subject><subject>Kidney Diseases - pathology</subject><subject>Kidney Tubules - drug effects</subject><subject>Kidney Tubules - enzymology</subject><subject>Kidney Tubules - pathology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>p53</subject><subject>PAI-1</subject><subject>Plasminogen Activator Inhibitor 1 - metabolism</subject><subject>PTEN</subject><subject>PTEN Phosphohydrolase - antagonists & inhibitors</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>renal fibrosis</subject><subject>RNA Interference</subject><subject>Signal Transduction</subject><subject>SMAD3</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - metabolism</subject><subject>Streptozocin</subject><subject>Transfection</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Ureteral Obstruction - complications</subject><subject>UUO</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhoModlu98A9IwBt7MW0-J8mNsNbaitta6IrgTchkMjbr7GRMZrT7781-uKggeHUSzvO-nHNeAJ5hdIIRIqe9Ge5OGKfyAZhgpMpCSVU-BJPcIwVlWByAw5QWCCGlOH8MDgiXGFGGJiDMQkowNHAYl2GMMI19H11KIcKb-fk1dPebrw8d9B2MrjNtfizGuMrFD94MLsHbq-kbWkDT1bDntKhd77radQNsfBXD4G0Wpj50yaUn4FFj2uSe7uoR-Pj2fH52Wcw-XLw7m84KyzGTRWWZEE5S11AimakqgjGpGCKKUs5F5UgtKG-stUgYbiiqhLRGYt6okuCyoUfg1da3H6ulq22eJppW99EvTVzpYLz-s9P5O_0lfNeMIyUxywYvdwYxfBtdGvTSJ-va1nQujEljgRQWZSn-Ay2VRFSQjeuLv9BFvno-6oYSBEmEVaaOt5SNOZ3omv3cGOl14nqduF4nntnnvy-6J39FnIHTLfDDt271byd9M51f7iyLrcKnwd3vFSZ-1aWggutP1xeav1afr_At1e_pT-8HxSM</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Samarakoon, Rohan</creator><creator>Helo, Sevann</creator><creator>Dobberfuhl, Amy D</creator><creator>Khakoo, Nidah S</creator><creator>Falke, Lucas</creator><creator>Overstreet, Jessica M</creator><creator>Goldschmeding, Roel</creator><creator>Higgins, Paul J</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201508</creationdate><title>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</title><author>Samarakoon, Rohan ; Helo, Sevann ; Dobberfuhl, Amy D ; Khakoo, Nidah S ; Falke, Lucas ; Overstreet, Jessica M ; Goldschmeding, Roel ; Higgins, Paul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AAN</topic><topic>Akt</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Aristolochic Acids</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>CTGF</topic><topic>Disease Models, Animal</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fibrosis</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Kidney Diseases - chemically induced</topic><topic>Kidney Diseases - enzymology</topic><topic>Kidney Diseases - genetics</topic><topic>Kidney Diseases - pathology</topic><topic>Kidney Tubules - drug effects</topic><topic>Kidney Tubules - enzymology</topic><topic>Kidney Tubules - pathology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>p53</topic><topic>PAI-1</topic><topic>Plasminogen Activator Inhibitor 1 - metabolism</topic><topic>PTEN</topic><topic>PTEN Phosphohydrolase - antagonists & inhibitors</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>renal fibrosis</topic><topic>RNA Interference</topic><topic>Signal Transduction</topic><topic>SMAD3</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - metabolism</topic><topic>Streptozocin</topic><topic>Transfection</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Ureteral Obstruction - complications</topic><topic>UUO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samarakoon, Rohan</creatorcontrib><creatorcontrib>Helo, Sevann</creatorcontrib><creatorcontrib>Dobberfuhl, Amy D</creatorcontrib><creatorcontrib>Khakoo, Nidah S</creatorcontrib><creatorcontrib>Falke, Lucas</creatorcontrib><creatorcontrib>Overstreet, Jessica M</creatorcontrib><creatorcontrib>Goldschmeding, Roel</creatorcontrib><creatorcontrib>Higgins, Paul J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samarakoon, Rohan</au><au>Helo, Sevann</au><au>Dobberfuhl, Amy D</au><au>Khakoo, Nidah S</au><au>Falke, Lucas</au><au>Overstreet, Jessica M</au><au>Goldschmeding, Roel</au><au>Higgins, Paul J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2015-08</date><risdate>2015</risdate><volume>236</volume><issue>4</issue><spage>421</spage><epage>432</epage><pages>421-432</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)‐mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK‐2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI‐1, vimentin, α‐SMA and fibronectin expression, compared to HK‐2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53Ser15 phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI‐1 rescued the PTEN loss‐associated epithelial proliferative arrest. Moreover, TGFβ1‐initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53‐dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3‐ and p53‐mediated fibrotic gene induction, with accompanying PAI‐1‐dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>25810340</pmid><doi>10.1002/path.4538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3417 |
ispartof | The Journal of pathology, 2015-08, Vol.236 (4), p.421-432 |
issn | 0022-3417 1096-9896 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4509814 |
source | Wiley |
subjects | AAN Akt Animals Apoptosis Aristolochic Acids Cell Cycle Checkpoints Cell Line Cell Proliferation CTGF Disease Models, Animal Enzyme Inhibitors - pharmacology Fibrosis Gene Expression Regulation Humans Kidney Diseases - chemically induced Kidney Diseases - enzymology Kidney Diseases - genetics Kidney Diseases - pathology Kidney Tubules - drug effects Kidney Tubules - enzymology Kidney Tubules - pathology Male Mice, Inbred C57BL p53 PAI-1 Plasminogen Activator Inhibitor 1 - metabolism PTEN PTEN Phosphohydrolase - antagonists & inhibitors PTEN Phosphohydrolase - genetics PTEN Phosphohydrolase - metabolism renal fibrosis RNA Interference Signal Transduction SMAD3 Smad3 Protein - genetics Smad3 Protein - metabolism Streptozocin Transfection Transforming Growth Factor beta1 - metabolism Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Ureteral Obstruction - complications UUO |
title | Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20tumour%20suppressor%20PTEN%20expression%20in%20renal%20injury%20initiates%20SMAD3-%20and%20p53-dependent%20fibrotic%20responses&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Samarakoon,%20Rohan&rft.date=2015-08&rft.volume=236&rft.issue=4&rft.spage=421&rft.epage=432&rft.pages=421-432&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4538&rft_dat=%3Cproquest_pubme%3E1709176674%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5148-bc477e83ef3284abb2112b402933557be2d735fccc07a5a30b78ca815f96216f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697208019&rft_id=info:pmid/25810340&rfr_iscdi=true |