Loading…

The c‐MYC‐ABCB5 axis plays a pivotal role in 5‐fluorouracil resistance in human colon cancer cells

c‐MYC overexpression is frequently observed in various cancers including colon cancer and regulates many biological activities such as aberrant cell proliferation, apoptosis, genomic instability, immortalization and drug resistance. However, the mechanism by which c‐MYC confers drug resistance remai...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular and molecular medicine 2015-07, Vol.19 (7), p.1569-1581
Main Authors: Kugimiya, Naruji, Nishimoto, Arata, Hosoyama, Tohru, Ueno, Koji, Enoki, Tadahiko, Li, Tao‐Sheng, Hamano, Kimikazu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:c‐MYC overexpression is frequently observed in various cancers including colon cancer and regulates many biological activities such as aberrant cell proliferation, apoptosis, genomic instability, immortalization and drug resistance. However, the mechanism by which c‐MYC confers drug resistance remains to be fully elucidated. In this study, we found that the c‐MYC expression level in primary colorectal cancer tissues correlated with the recurrence rate following 5‐fluorouracil (5‐FU)‐based adjuvant chemotherapy. Supporting this finding, overexpression of exogenous c‐MYC increased the survival rate following 5‐FU treatment in human colon cancer cells, and knockdown of endogenous c‐MYC decreased it. Furthermore, c‐MYC knockdown decreased the expression level of ABCB5, which is involved in 5‐FU resistance. Using a chromatin immunoprecipitation assay, we found that c‐MYC bound to the ABCB5 promoter region. c‐MYC inhibitor (10058‐F4) treatment inhibited c‐MYC binding to the ABCB5 promoter, leading to a decrease in ABCB5 expression level. ABCB5 knockdown decreased the survival rate following 5‐FU treatment as expected, and the ABCB5 expression level was increased in 5‐FU‐resistant human colon cancer cells. Finally, using a human colon cancer xenograft murine model, we found that the combined 5‐FU and 10058‐F4 treatment significantly decreased tumorigenicity in nude mice compared with 5‐FU or 10058‐F4 treatment alone. 10058‐F4 treatment decreased the ABCB5 expression level in the presence or absence of 5‐FU. In contrast, 5‐FU treatment alone increased the ABCB5 expression level. Taken together, these results suggest that c‐MYC confers resistance to 5‐FU through regulating ABCB5 expression in human colon cancer cells.
ISSN:1582-1838
1582-4934
DOI:10.1111/jcmm.12531