Loading…
Mitochondrial ATP transporter Ant2 depletion impairs erythropoiesis and B lymphopoiesis
Adenine nucleotide translocases (ANTs) transport ADP and ATP through mitochondrial inner membrane, thus playing an essential role for energy metabolism of eukaryotic cells. Mice have three ANT paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5) and Ant4 (Slc25a31), which are expressed in a tissue-dependent man...
Saved in:
Published in: | Cell death and differentiation 2015-09, Vol.22 (9), p.1437-1450 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adenine nucleotide translocases (ANTs) transport ADP and ATP through mitochondrial inner membrane, thus playing an essential role for energy metabolism of eukaryotic cells. Mice have three ANT paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5) and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. While knockout mice have been characterized with
Ant1
and
Ant4
genes, which resulted in exercise intolerance and male infertility, respectively, the role of the ubiquitously expressed
Ant2
gene in animal development has not been fully demonstrated. Here, we generated
Ant2
hypomorphic mice by targeted disruption of the gene, in which Ant2 expression is largely depleted. The mice showed apparently normal embryonic development except pale phenotype along with a reduced birth rate. However, postnatal growth was severely retarded with macrocytic anemia, B lymphocytopenia, lactic acidosis and bloated stomach, and died within 4 weeks. Ant2 depletion caused anemia in a cell-autonomous manner by maturation arrest of erythroid precursors with increased reactive oxygen species and premature deaths. B-lymphocyte development was similarly affected by Ant2 depletion, and splenocytes showed a reduction in maximal respiration capacity and cellular ATP levels as well as an increase in cell death accompanying mitochondrial permeability transition pore opening. In contrast, myeloid, megakaryocyte and T-lymphocyte lineages remained apparently intact. Erythroid and B-cell development may be particularly vulnerable to Ant2 depletion-mediated mitochondrial dysfunction and oxidative stress. |
---|---|
ISSN: | 1350-9047 1476-5403 |
DOI: | 10.1038/cdd.2014.230 |