Loading…
Repeated measures of inflammation, blood pressure, and heart rate variability associated with traffic exposures in healthy adults
Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic locations while looking at a vast...
Saved in:
Published in: | Environmental health 2015-08, Vol.14 (1), p.66-66, Article 66 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic locations while looking at a vast array of health endpoints in the same population. We evaluated inflammatory markers, heart rate variability (HRV), blood pressure, exhaled nitric oxide, and lung function in healthy participants after exposures to varying mixtures of traffic pollutants.
A repeated-measures, crossover study design was used in which 23 healthy, non-smoking adults had clinical cardiopulmonary and systemic inflammatory measurements taken prior to, immediately after, and 24 hours after intermittent walking for two hours in the summer months along three diverse roadways having unique emission characteristics. Measurements of PM2.5, PM10, black carbon (BC), elemental carbon (EC), and organic carbon (OC) were collected. Mixed effect models were used to assess changes in health effects associated with these specific pollutant classes.
Minimal associations were observed with lung function measurements and the pollutants measured. Small decreases in BP measurements and rMSSD, and increases in IL-1β and the low frequency to high frequency ratio measured in HRV, were observed with increasing concentrations of PM2.5 EC.
Small, acute changes in cardiovascular and inflammation-related effects of microenvironmental exposures to traffic-related air pollution were observed in a group of healthy young adults. The associations were most profound with the diesel-source EC. |
---|---|
ISSN: | 1476-069X 1476-069X |
DOI: | 10.1186/s12940-015-0049-0 |