Loading…
The ancestor of modern Holozoa acquired the CCA-adding enzyme from Alphaproteobacteria by horizontal gene transfer
Transfer RNAs (tRNAs) require the absolutely conserved sequence motif CCA at their 3'-ends, representing the site of aminoacylation. In the majority of organisms, this trinucleotide sequence is not encoded in the genome and thus has to be added post-transcriptionally by the CCA-adding enzyme, a...
Saved in:
Published in: | Nucleic acids research 2015-08, Vol.43 (14), p.6739-6746 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transfer RNAs (tRNAs) require the absolutely conserved sequence motif CCA at their 3'-ends, representing the site of aminoacylation. In the majority of organisms, this trinucleotide sequence is not encoded in the genome and thus has to be added post-transcriptionally by the CCA-adding enzyme, a specialized nucleotidyltransferase. In eukaryotic genomes this ubiquitous and highly conserved enzyme family is usually represented by a single gene copy. Analysis of published sequence data allows us to pin down the unusual evolution of eukaryotic CCA-adding enzymes. We show that the CCA-adding enzymes of animals originated from a horizontal gene transfer event in the stem lineage of Holozoa, i.e. Metazoa (animals) and their unicellular relatives, the Choanozoa. The tRNA nucleotidyltransferase, acquired from an α-proteobacterium, replaced the ancestral enzyme in Metazoa. However, in Choanoflagellata, the group of Choanozoa that is closest to Metazoa, both the ancestral and the horizontally transferred CCA-adding enzymes have survived. Furthermore, our data refute a mitochondrial origin of the animal tRNA nucleotidyltransferases. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gkv631 |