Loading…
Protective Polymer Coatings for High-Throughput, High-Purity Cellular Isolation
Cell-based therapies are emerging as the next frontier of medicine, offering a plausible path forward in the treatment of many devastating diseases. Critically, current methods for antigen positive cell sorting lack a high throughput method for delivering ultrahigh purity populations, prohibiting th...
Saved in:
Published in: | ACS applied materials & interfaces 2015-08, Vol.7 (32), p.17598-17602 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell-based therapies are emerging as the next frontier of medicine, offering a plausible path forward in the treatment of many devastating diseases. Critically, current methods for antigen positive cell sorting lack a high throughput method for delivering ultrahigh purity populations, prohibiting the application of some cell-based therapies to widespread diseases. Here we show the first use of targeted, protective polymer coatings on cells for the high speed enrichment of cells. Individual, antigen-positive cells are coated with a biocompatible hydrogel which protects the cells from a surfactant solution, while uncoated cells are immediately lysed. After lysis, the polymer coating is removed through orthogonal photochemistry, and the isolate has >50% yield of viable cells and these cells proliferate at rates comparable to control cells. Minority cell populations are enriched from erythrocyte-depleted blood to >99% purity, whereas the entire batch process requires 1 h and |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b06298 |