Loading…
A roadmap for interpreting 13C metabolite labeling patterns from cells
•13C tracer analysis can be used to probe intracellular metabolism in cells.•Steady state labeling patterns can quantify nutrient contributions.•Steady state labeling patterns can inform about pathway activities.•Dynamic labeling patterns combined with metabolite levels can quantify some fluxes.•Ana...
Saved in:
Published in: | Current opinion in biotechnology 2015-08, Vol.34, p.189-201 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 201 |
container_issue | |
container_start_page | 189 |
container_title | Current opinion in biotechnology |
container_volume | 34 |
creator | Buescher, Joerg M Antoniewicz, Maciek R Boros, Laszlo G Burgess, Shawn C Brunengraber, Henri Clish, Clary B DeBerardinis, Ralph J Feron, Olivier Frezza, Christian Ghesquiere, Bart Gottlieb, Eyal Hiller, Karsten Jones, Russell G Kamphorst, Jurre J Kibbey, Richard G Kimmelman, Alec C Locasale, Jason W Lunt, Sophia Y Maddocks, Oliver DK Malloy, Craig Metallo, Christian M Meuillet, Emmanuelle J Munger, Joshua Nöh, Katharina Rabinowitz, Joshua D Ralser, Markus Sauer, Uwe Stephanopoulos, Gregory St-Pierre, Julie Tennant, Daniel A Wittmann, Christoph Vander Heiden, Matthew G Vazquez, Alexei Vousden, Karen Young, Jamey D Zamboni, Nicola Fendt, Sarah-Maria |
description | •13C tracer analysis can be used to probe intracellular metabolism in cells.•Steady state labeling patterns can quantify nutrient contributions.•Steady state labeling patterns can inform about pathway activities.•Dynamic labeling patterns combined with metabolite levels can quantify some fluxes.•Analysis of multiple metabolites and various tracers enhances information output.
Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments. |
doi_str_mv | 10.1016/j.copbio.2015.02.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958166915000221</els_id><sourcerecordid>2000139552</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1437-cb58812012b661929261c79efd064540dc3f5dd598ca7809a4c5b0fadc5220f13</originalsourceid><addsrcrecordid>eNpVkdFLwzAQxoMobk7_Ax_66EvrJWna5kUYw6kw8EWfQ5pcZ0bb1KQb-N_bsYH4dHD38d199yPknkJGgRaPu8z4oXY-Y0BFBiwD4BdkTqtSppAzeUnmIEWV0qKQM3IT4w4ABC_hmsyYKDktBZ2T9TIJXttOD0njQ-L6EcMQcHT9NqF8lXQ46tq3bsSk1TW2x_6gx0nVx6QJvksMtm28JVeNbiPeneuCfK6fP1av6eb95W213KRIc16mphZVRaeDWV0UVDLJCmpKiY2FIhc5WMMbYa2QldFlBVLnRtTQaGsEY9BQviBPJ99hX3doDfZj0K0agut0-FFeO_V_0rsvtfUHlQvBCigng4ezQfDfe4yj6lw8RtA9-n1UbHoS5XJS_-3CKdDBYVDROOwNWhfQjMp6pyioIwy1UycY6ghDAVMTDP4LMwF-lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000139552</pqid></control><display><type>article</type><title>A roadmap for interpreting 13C metabolite labeling patterns from cells</title><source>Elsevier</source><creator>Buescher, Joerg M ; Antoniewicz, Maciek R ; Boros, Laszlo G ; Burgess, Shawn C ; Brunengraber, Henri ; Clish, Clary B ; DeBerardinis, Ralph J ; Feron, Olivier ; Frezza, Christian ; Ghesquiere, Bart ; Gottlieb, Eyal ; Hiller, Karsten ; Jones, Russell G ; Kamphorst, Jurre J ; Kibbey, Richard G ; Kimmelman, Alec C ; Locasale, Jason W ; Lunt, Sophia Y ; Maddocks, Oliver DK ; Malloy, Craig ; Metallo, Christian M ; Meuillet, Emmanuelle J ; Munger, Joshua ; Nöh, Katharina ; Rabinowitz, Joshua D ; Ralser, Markus ; Sauer, Uwe ; Stephanopoulos, Gregory ; St-Pierre, Julie ; Tennant, Daniel A ; Wittmann, Christoph ; Vander Heiden, Matthew G ; Vazquez, Alexei ; Vousden, Karen ; Young, Jamey D ; Zamboni, Nicola ; Fendt, Sarah-Maria</creator><creatorcontrib>Buescher, Joerg M ; Antoniewicz, Maciek R ; Boros, Laszlo G ; Burgess, Shawn C ; Brunengraber, Henri ; Clish, Clary B ; DeBerardinis, Ralph J ; Feron, Olivier ; Frezza, Christian ; Ghesquiere, Bart ; Gottlieb, Eyal ; Hiller, Karsten ; Jones, Russell G ; Kamphorst, Jurre J ; Kibbey, Richard G ; Kimmelman, Alec C ; Locasale, Jason W ; Lunt, Sophia Y ; Maddocks, Oliver DK ; Malloy, Craig ; Metallo, Christian M ; Meuillet, Emmanuelle J ; Munger, Joshua ; Nöh, Katharina ; Rabinowitz, Joshua D ; Ralser, Markus ; Sauer, Uwe ; Stephanopoulos, Gregory ; St-Pierre, Julie ; Tennant, Daniel A ; Wittmann, Christoph ; Vander Heiden, Matthew G ; Vazquez, Alexei ; Vousden, Karen ; Young, Jamey D ; Zamboni, Nicola ; Fendt, Sarah-Maria</creatorcontrib><description>•13C tracer analysis can be used to probe intracellular metabolism in cells.•Steady state labeling patterns can quantify nutrient contributions.•Steady state labeling patterns can inform about pathway activities.•Dynamic labeling patterns combined with metabolite levels can quantify some fluxes.•Analysis of multiple metabolites and various tracers enhances information output.
Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments.</description><identifier>ISSN: 0958-1669</identifier><identifier>EISSN: 1879-0429</identifier><identifier>DOI: 10.1016/j.copbio.2015.02.003</identifier><identifier>PMID: 25731751</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>biomedical research ; isotope labeling ; metabolism ; metabolites</subject><ispartof>Current opinion in biotechnology, 2015-08, Vol.34, p.189-201</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Buescher, Joerg M</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Boros, Laszlo G</creatorcontrib><creatorcontrib>Burgess, Shawn C</creatorcontrib><creatorcontrib>Brunengraber, Henri</creatorcontrib><creatorcontrib>Clish, Clary B</creatorcontrib><creatorcontrib>DeBerardinis, Ralph J</creatorcontrib><creatorcontrib>Feron, Olivier</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Ghesquiere, Bart</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Hiller, Karsten</creatorcontrib><creatorcontrib>Jones, Russell G</creatorcontrib><creatorcontrib>Kamphorst, Jurre J</creatorcontrib><creatorcontrib>Kibbey, Richard G</creatorcontrib><creatorcontrib>Kimmelman, Alec C</creatorcontrib><creatorcontrib>Locasale, Jason W</creatorcontrib><creatorcontrib>Lunt, Sophia Y</creatorcontrib><creatorcontrib>Maddocks, Oliver DK</creatorcontrib><creatorcontrib>Malloy, Craig</creatorcontrib><creatorcontrib>Metallo, Christian M</creatorcontrib><creatorcontrib>Meuillet, Emmanuelle J</creatorcontrib><creatorcontrib>Munger, Joshua</creatorcontrib><creatorcontrib>Nöh, Katharina</creatorcontrib><creatorcontrib>Rabinowitz, Joshua D</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><creatorcontrib>St-Pierre, Julie</creatorcontrib><creatorcontrib>Tennant, Daniel A</creatorcontrib><creatorcontrib>Wittmann, Christoph</creatorcontrib><creatorcontrib>Vander Heiden, Matthew G</creatorcontrib><creatorcontrib>Vazquez, Alexei</creatorcontrib><creatorcontrib>Vousden, Karen</creatorcontrib><creatorcontrib>Young, Jamey D</creatorcontrib><creatorcontrib>Zamboni, Nicola</creatorcontrib><creatorcontrib>Fendt, Sarah-Maria</creatorcontrib><title>A roadmap for interpreting 13C metabolite labeling patterns from cells</title><title>Current opinion in biotechnology</title><description>•13C tracer analysis can be used to probe intracellular metabolism in cells.•Steady state labeling patterns can quantify nutrient contributions.•Steady state labeling patterns can inform about pathway activities.•Dynamic labeling patterns combined with metabolite levels can quantify some fluxes.•Analysis of multiple metabolites and various tracers enhances information output.
Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments.</description><subject>biomedical research</subject><subject>isotope labeling</subject><subject>metabolism</subject><subject>metabolites</subject><issn>0958-1669</issn><issn>1879-0429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkdFLwzAQxoMobk7_Ax_66EvrJWna5kUYw6kw8EWfQ5pcZ0bb1KQb-N_bsYH4dHD38d199yPknkJGgRaPu8z4oXY-Y0BFBiwD4BdkTqtSppAzeUnmIEWV0qKQM3IT4w4ABC_hmsyYKDktBZ2T9TIJXttOD0njQ-L6EcMQcHT9NqF8lXQ46tq3bsSk1TW2x_6gx0nVx6QJvksMtm28JVeNbiPeneuCfK6fP1av6eb95W213KRIc16mphZVRaeDWV0UVDLJCmpKiY2FIhc5WMMbYa2QldFlBVLnRtTQaGsEY9BQviBPJ99hX3doDfZj0K0agut0-FFeO_V_0rsvtfUHlQvBCigng4ezQfDfe4yj6lw8RtA9-n1UbHoS5XJS_-3CKdDBYVDROOwNWhfQjMp6pyioIwy1UycY6ghDAVMTDP4LMwF-lg</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Buescher, Joerg M</creator><creator>Antoniewicz, Maciek R</creator><creator>Boros, Laszlo G</creator><creator>Burgess, Shawn C</creator><creator>Brunengraber, Henri</creator><creator>Clish, Clary B</creator><creator>DeBerardinis, Ralph J</creator><creator>Feron, Olivier</creator><creator>Frezza, Christian</creator><creator>Ghesquiere, Bart</creator><creator>Gottlieb, Eyal</creator><creator>Hiller, Karsten</creator><creator>Jones, Russell G</creator><creator>Kamphorst, Jurre J</creator><creator>Kibbey, Richard G</creator><creator>Kimmelman, Alec C</creator><creator>Locasale, Jason W</creator><creator>Lunt, Sophia Y</creator><creator>Maddocks, Oliver DK</creator><creator>Malloy, Craig</creator><creator>Metallo, Christian M</creator><creator>Meuillet, Emmanuelle J</creator><creator>Munger, Joshua</creator><creator>Nöh, Katharina</creator><creator>Rabinowitz, Joshua D</creator><creator>Ralser, Markus</creator><creator>Sauer, Uwe</creator><creator>Stephanopoulos, Gregory</creator><creator>St-Pierre, Julie</creator><creator>Tennant, Daniel A</creator><creator>Wittmann, Christoph</creator><creator>Vander Heiden, Matthew G</creator><creator>Vazquez, Alexei</creator><creator>Vousden, Karen</creator><creator>Young, Jamey D</creator><creator>Zamboni, Nicola</creator><creator>Fendt, Sarah-Maria</creator><general>Elsevier Ltd</general><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150801</creationdate><title>A roadmap for interpreting 13C metabolite labeling patterns from cells</title><author>Buescher, Joerg M ; Antoniewicz, Maciek R ; Boros, Laszlo G ; Burgess, Shawn C ; Brunengraber, Henri ; Clish, Clary B ; DeBerardinis, Ralph J ; Feron, Olivier ; Frezza, Christian ; Ghesquiere, Bart ; Gottlieb, Eyal ; Hiller, Karsten ; Jones, Russell G ; Kamphorst, Jurre J ; Kibbey, Richard G ; Kimmelman, Alec C ; Locasale, Jason W ; Lunt, Sophia Y ; Maddocks, Oliver DK ; Malloy, Craig ; Metallo, Christian M ; Meuillet, Emmanuelle J ; Munger, Joshua ; Nöh, Katharina ; Rabinowitz, Joshua D ; Ralser, Markus ; Sauer, Uwe ; Stephanopoulos, Gregory ; St-Pierre, Julie ; Tennant, Daniel A ; Wittmann, Christoph ; Vander Heiden, Matthew G ; Vazquez, Alexei ; Vousden, Karen ; Young, Jamey D ; Zamboni, Nicola ; Fendt, Sarah-Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1437-cb58812012b661929261c79efd064540dc3f5dd598ca7809a4c5b0fadc5220f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>biomedical research</topic><topic>isotope labeling</topic><topic>metabolism</topic><topic>metabolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buescher, Joerg M</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Boros, Laszlo G</creatorcontrib><creatorcontrib>Burgess, Shawn C</creatorcontrib><creatorcontrib>Brunengraber, Henri</creatorcontrib><creatorcontrib>Clish, Clary B</creatorcontrib><creatorcontrib>DeBerardinis, Ralph J</creatorcontrib><creatorcontrib>Feron, Olivier</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Ghesquiere, Bart</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Hiller, Karsten</creatorcontrib><creatorcontrib>Jones, Russell G</creatorcontrib><creatorcontrib>Kamphorst, Jurre J</creatorcontrib><creatorcontrib>Kibbey, Richard G</creatorcontrib><creatorcontrib>Kimmelman, Alec C</creatorcontrib><creatorcontrib>Locasale, Jason W</creatorcontrib><creatorcontrib>Lunt, Sophia Y</creatorcontrib><creatorcontrib>Maddocks, Oliver DK</creatorcontrib><creatorcontrib>Malloy, Craig</creatorcontrib><creatorcontrib>Metallo, Christian M</creatorcontrib><creatorcontrib>Meuillet, Emmanuelle J</creatorcontrib><creatorcontrib>Munger, Joshua</creatorcontrib><creatorcontrib>Nöh, Katharina</creatorcontrib><creatorcontrib>Rabinowitz, Joshua D</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><creatorcontrib>St-Pierre, Julie</creatorcontrib><creatorcontrib>Tennant, Daniel A</creatorcontrib><creatorcontrib>Wittmann, Christoph</creatorcontrib><creatorcontrib>Vander Heiden, Matthew G</creatorcontrib><creatorcontrib>Vazquez, Alexei</creatorcontrib><creatorcontrib>Vousden, Karen</creatorcontrib><creatorcontrib>Young, Jamey D</creatorcontrib><creatorcontrib>Zamboni, Nicola</creatorcontrib><creatorcontrib>Fendt, Sarah-Maria</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buescher, Joerg M</au><au>Antoniewicz, Maciek R</au><au>Boros, Laszlo G</au><au>Burgess, Shawn C</au><au>Brunengraber, Henri</au><au>Clish, Clary B</au><au>DeBerardinis, Ralph J</au><au>Feron, Olivier</au><au>Frezza, Christian</au><au>Ghesquiere, Bart</au><au>Gottlieb, Eyal</au><au>Hiller, Karsten</au><au>Jones, Russell G</au><au>Kamphorst, Jurre J</au><au>Kibbey, Richard G</au><au>Kimmelman, Alec C</au><au>Locasale, Jason W</au><au>Lunt, Sophia Y</au><au>Maddocks, Oliver DK</au><au>Malloy, Craig</au><au>Metallo, Christian M</au><au>Meuillet, Emmanuelle J</au><au>Munger, Joshua</au><au>Nöh, Katharina</au><au>Rabinowitz, Joshua D</au><au>Ralser, Markus</au><au>Sauer, Uwe</au><au>Stephanopoulos, Gregory</au><au>St-Pierre, Julie</au><au>Tennant, Daniel A</au><au>Wittmann, Christoph</au><au>Vander Heiden, Matthew G</au><au>Vazquez, Alexei</au><au>Vousden, Karen</au><au>Young, Jamey D</au><au>Zamboni, Nicola</au><au>Fendt, Sarah-Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A roadmap for interpreting 13C metabolite labeling patterns from cells</atitle><jtitle>Current opinion in biotechnology</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>34</volume><spage>189</spage><epage>201</epage><pages>189-201</pages><issn>0958-1669</issn><eissn>1879-0429</eissn><abstract>•13C tracer analysis can be used to probe intracellular metabolism in cells.•Steady state labeling patterns can quantify nutrient contributions.•Steady state labeling patterns can inform about pathway activities.•Dynamic labeling patterns combined with metabolite levels can quantify some fluxes.•Analysis of multiple metabolites and various tracers enhances information output.
Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments.</abstract><pub>Elsevier Ltd</pub><pmid>25731751</pmid><doi>10.1016/j.copbio.2015.02.003</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-1669 |
ispartof | Current opinion in biotechnology, 2015-08, Vol.34, p.189-201 |
issn | 0958-1669 1879-0429 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552607 |
source | Elsevier |
subjects | biomedical research isotope labeling metabolism metabolites |
title | A roadmap for interpreting 13C metabolite labeling patterns from cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20roadmap%20for%20interpreting%2013C%20metabolite%20labeling%20patterns%20from%20cells&rft.jtitle=Current%20opinion%20in%20biotechnology&rft.au=Buescher,%20Joerg%20M&rft.date=2015-08-01&rft.volume=34&rft.spage=189&rft.epage=201&rft.pages=189-201&rft.issn=0958-1669&rft.eissn=1879-0429&rft_id=info:doi/10.1016/j.copbio.2015.02.003&rft_dat=%3Cproquest_pubme%3E2000139552%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e1437-cb58812012b661929261c79efd064540dc3f5dd598ca7809a4c5b0fadc5220f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2000139552&rft_id=info:pmid/25731751&rfr_iscdi=true |