Loading…
A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice
Abstract We developed a novel poly(lactic-co-glycolic acid)-based, microparticle (MP) system providing concurrent delivery of multiple encapsulated immuno-suppressive factors and antigen, for in vivo conditioning of dendritic cells (DCs) toward a tolerance promoting pathway. Subcutaneous administrat...
Saved in:
Published in: | Clinical immunology (Orlando, Fla.) Fla.), 2015-09, Vol.160 (1), p.90-102 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We developed a novel poly(lactic-co-glycolic acid)-based, microparticle (MP) system providing concurrent delivery of multiple encapsulated immuno-suppressive factors and antigen, for in vivo conditioning of dendritic cells (DCs) toward a tolerance promoting pathway. Subcutaneous administration prevents onset of type 1 diabetes (T1D) in NOD mice. Two MP sizes were made: phagocytosable MPs were fabricated encapsulating vitamin D3 or insulin B(9–23) peptide, while unphagocytosable MPs were fabricated encapsulating TGF-β1 or GM-CSF. The combination of Vit D3/TGF-β1 MPs confers an immature and LPS activation-resistant phenotype to DCs, and MP-delivered antigen is efficiently and functionally presented. Notably, two subcutaneous injections into 4 week old NOD mice using the combination of MPs encapsulating Vit D3, Ins B, TGF-β1 and GM-CSF protected 40% of mice from T1D development, significant in comparison to the control. This work represents one of the first applications of a biomaterial-based, MP vaccine system to successfully prevent autoimmune diabetes. |
---|---|
ISSN: | 1521-6616 1521-7035 |
DOI: | 10.1016/j.clim.2015.03.023 |