Loading…

Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase

The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other as...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Renal physiology 2015-09, Vol.309 (5), p.F434-F446
Main Authors: Nadal-Quirós, Mónica, Moore, Leon C, Marcano, Mariano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-ffe7b44bfaaca5d3569213e4cd7c3d1817121b0cbce8cafbe01346f2280a4d853
cites cdi_FETCH-LOGICAL-c433t-ffe7b44bfaaca5d3569213e4cd7c3d1817121b0cbce8cafbe01346f2280a4d853
container_end_page F446
container_issue 5
container_start_page F434
container_title American journal of physiology. Renal physiology
container_volume 309
creator Nadal-Quirós, Mónica
Moore, Leon C
Marcano, Mariano
description The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was
doi_str_mv 10.1152/ajprenal.00539.2014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3802338251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-ffe7b44bfaaca5d3569213e4cd7c3d1817121b0cbce8cafbe01346f2280a4d853</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVoaS7tLygUQ182LN5qrIvtl0AISbc0pHlIS97EWB4lXmxrI3kD-ffR5kZb9KAj5sxhRh9jn4EvAFTxDVfrQCP2C86VqBcFB7nD9lKlyEFq_S7pWkBeqfJ6l-3HuOKcAxTwge0WGnidzh77c4kBB5ooZBSnbsCp82PmfMiSvKXt22KfDb6lPmbeZZiNfrzBOIXOZsv57ALnh_nP2fxwdrGUSR5fXWKkj-y9wz7Sp5f7gP0-O706Webnv77_ODk-z60UYsqdo7KRsnGIFlUrlK4LECRtW1rRQgVlmrfhtrFUWXQNcRBSu6KoOMq2UuKAHT3nrjfNQK2lcQrYm3VIm4QH47Ez_1bG7tbc-HsjldJVzVPA7CUg-LtN-gIzdNFS3-NIfhMNlLwWtS6VTNav_1lXfhMSgK0LuNYlKEgu8eyywccYyL0NA9xsuZlXbuaJm9lyS11f_t7jrecVlHgExF-U0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710667151</pqid></control><display><type>article</type><title>Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase</title><source>American Physiological Society Free</source><creator>Nadal-Quirós, Mónica ; Moore, Leon C ; Marcano, Mariano</creator><creatorcontrib>Nadal-Quirós, Mónica ; Moore, Leon C ; Marcano, Mariano</creatorcontrib><description>The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was &lt;5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of &lt;2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules.</description><identifier>ISSN: 1931-857X</identifier><identifier>EISSN: 1522-1466</identifier><identifier>DOI: 10.1152/ajprenal.00539.2014</identifier><identifier>PMID: 26109090</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adenosine triphosphatase ; H(+)-K(+)-Exchanging ATPase - metabolism ; Homeostasis ; Homeostasis - physiology ; Humans ; Kidney Tubules, Distal - metabolism ; Loop of Henle - metabolism ; Mathematical models ; Models, Biological ; Parameter estimation ; Physiology</subject><ispartof>American journal of physiology. Renal physiology, 2015-09, Vol.309 (5), p.F434-F446</ispartof><rights>Copyright © 2015 the American Physiological Society.</rights><rights>Copyright American Physiological Society Sep 1, 2015</rights><rights>Copyright © 2015 the American Physiological Society 2015 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-ffe7b44bfaaca5d3569213e4cd7c3d1817121b0cbce8cafbe01346f2280a4d853</citedby><cites>FETCH-LOGICAL-c433t-ffe7b44bfaaca5d3569213e4cd7c3d1817121b0cbce8cafbe01346f2280a4d853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26109090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadal-Quirós, Mónica</creatorcontrib><creatorcontrib>Moore, Leon C</creatorcontrib><creatorcontrib>Marcano, Mariano</creatorcontrib><title>Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase</title><title>American journal of physiology. Renal physiology</title><addtitle>Am J Physiol Renal Physiol</addtitle><description>The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was &lt;5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of &lt;2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules.</description><subject>Adenosine triphosphatase</subject><subject>H(+)-K(+)-Exchanging ATPase - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Humans</subject><subject>Kidney Tubules, Distal - metabolism</subject><subject>Loop of Henle - metabolism</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Parameter estimation</subject><subject>Physiology</subject><issn>1931-857X</issn><issn>1522-1466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkVtr3DAQhUVoaS7tLygUQ182LN5qrIvtl0AISbc0pHlIS97EWB4lXmxrI3kD-ffR5kZb9KAj5sxhRh9jn4EvAFTxDVfrQCP2C86VqBcFB7nD9lKlyEFq_S7pWkBeqfJ6l-3HuOKcAxTwge0WGnidzh77c4kBB5ooZBSnbsCp82PmfMiSvKXt22KfDb6lPmbeZZiNfrzBOIXOZsv57ALnh_nP2fxwdrGUSR5fXWKkj-y9wz7Sp5f7gP0-O706Webnv77_ODk-z60UYsqdo7KRsnGIFlUrlK4LECRtW1rRQgVlmrfhtrFUWXQNcRBSu6KoOMq2UuKAHT3nrjfNQK2lcQrYm3VIm4QH47Ez_1bG7tbc-HsjldJVzVPA7CUg-LtN-gIzdNFS3-NIfhMNlLwWtS6VTNav_1lXfhMSgK0LuNYlKEgu8eyywccYyL0NA9xsuZlXbuaJm9lyS11f_t7jrecVlHgExF-U0A</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Nadal-Quirós, Mónica</creator><creator>Moore, Leon C</creator><creator>Marcano, Mariano</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150901</creationdate><title>Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase</title><author>Nadal-Quirós, Mónica ; Moore, Leon C ; Marcano, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-ffe7b44bfaaca5d3569213e4cd7c3d1817121b0cbce8cafbe01346f2280a4d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine triphosphatase</topic><topic>H(+)-K(+)-Exchanging ATPase - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Humans</topic><topic>Kidney Tubules, Distal - metabolism</topic><topic>Loop of Henle - metabolism</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Parameter estimation</topic><topic>Physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadal-Quirós, Mónica</creatorcontrib><creatorcontrib>Moore, Leon C</creatorcontrib><creatorcontrib>Marcano, Mariano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology. Renal physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadal-Quirós, Mónica</au><au>Moore, Leon C</au><au>Marcano, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase</atitle><jtitle>American journal of physiology. Renal physiology</jtitle><addtitle>Am J Physiol Renal Physiol</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>309</volume><issue>5</issue><spage>F434</spage><epage>F446</epage><pages>F434-F446</pages><issn>1931-857X</issn><eissn>1522-1466</eissn><abstract>The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was &lt;5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of &lt;2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>26109090</pmid><doi>10.1152/ajprenal.00539.2014</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-857X
ispartof American journal of physiology. Renal physiology, 2015-09, Vol.309 (5), p.F434-F446
issn 1931-857X
1522-1466
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4556890
source American Physiological Society Free
subjects Adenosine triphosphatase
H(+)-K(+)-Exchanging ATPase - metabolism
Homeostasis
Homeostasis - physiology
Humans
Kidney Tubules, Distal - metabolism
Loop of Henle - metabolism
Mathematical models
Models, Biological
Parameter estimation
Physiology
title Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20estimation%20for%20mathematical%20models%20of%20a%20nongastric%20H+(Na+)-K(+)(NH4+)-ATPase&rft.jtitle=American%20journal%20of%20physiology.%20Renal%20physiology&rft.au=Nadal-Quir%C3%B3s,%20M%C3%B3nica&rft.date=2015-09-01&rft.volume=309&rft.issue=5&rft.spage=F434&rft.epage=F446&rft.pages=F434-F446&rft.issn=1931-857X&rft.eissn=1522-1466&rft_id=info:doi/10.1152/ajprenal.00539.2014&rft_dat=%3Cproquest_pubme%3E3802338251%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-ffe7b44bfaaca5d3569213e4cd7c3d1817121b0cbce8cafbe01346f2280a4d853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1710667151&rft_id=info:pmid/26109090&rfr_iscdi=true