Loading…

High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording

The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-09, Vol.5 (1), p.13425-13425, Article 13425
Main Authors: Zhao, Dong-Jie, Chen, Yang, Wang, Zi-Yang, Xue, Lin, Mao, Tong-Lin, Liu, Yi-Min, Wang, Zhong-Yi, Huang, Lan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the stem of Helianthus annuus and variation potentials at multiple sites simultaneously with high spatial resolution. The method of signal processing using coherence analysis was used to determine the synchronization of the selected signals. Our results provide direct visualization of the phloem, which is the distribution region of the electrical activities in the stem and leaf of H. annuus and verify that the phloem is the main action potential transmission route in the stems of higher plants. Finally, the method of optical recording offers a unique opportunity to map the dynamic bioelectrical activity and provides an insight into the mechanisms of long-distance electrical signal transmission in higher plants.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep13425