Loading…
Scaling in ANOVA-simultaneous component analysis
In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines an...
Saved in:
Published in: | Metabolomics 2015, Vol.11 (5), p.1265-1276 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43 |
container_end_page | 1276 |
container_issue | 5 |
container_start_page | 1265 |
container_title | Metabolomics |
container_volume | 11 |
creator | Timmerman, Marieke E. Hoefsloot, Huub C. J. Smilde, Age K. Ceulemans, Eva |
description | In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods. |
doi_str_mv | 10.1007/s11306-015-0785-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4559107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826628191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</originalsourceid><addsrcrecordid>eNp1kUlLA0EQhRtRTIz-AC8S8OJltKpnersIIbhBMAeXa9PT6cQJs8TpGSH_3g4TQxQ8VUF99aoej5BzhGsEEDceMQYeAbIIhGSRPCB9ZCKOYqngcNdL2iMn3i8BkkQJOCY9ymPOMeZ9Ai_W5Fm5GGblcPQ8fR9FPivavDGlq1o_tFWxqkpXNkNTmnztM39KjuYm9-5sWwfk7f7udfwYTaYPT-PRJLIsgSYyaSLsjFkquY2pQQScCSOtpCxOLeUOE6Z4aqwzMlWKM4moDDALqXNmlsQDctvprtq0cDMbfqhNrld1Vph6rSuT6d-TMvvQi-pLJ4wpBBEErrYCdfXZOt_oIvPW5XlnTaOknFOJCgN6-QddVm0dDAdKgKKMMrERxI6ydeV97ea7ZxD0Jg_d5aFDHnqTh5Zh52LfxW7jJ4AA0A7wYVQuXL13-l_VbxjLlUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709252577</pqid></control><display><type>article</type><title>Scaling in ANOVA-simultaneous component analysis</title><source>Springer Nature</source><creator>Timmerman, Marieke E. ; Hoefsloot, Huub C. J. ; Smilde, Age K. ; Ceulemans, Eva</creator><creatorcontrib>Timmerman, Marieke E. ; Hoefsloot, Huub C. J. ; Smilde, Age K. ; Ceulemans, Eva</creatorcontrib><description>In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.</description><identifier>ISSN: 1573-3882</identifier><identifier>EISSN: 1573-3890</identifier><identifier>DOI: 10.1007/s11306-015-0785-8</identifier><identifier>PMID: 26366136</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Developmental Biology ; Life Sciences ; Molecular Medicine ; Original ; Original Article</subject><ispartof>Metabolomics, 2015, Vol.11 (5), p.1265-1276</ispartof><rights>The Author(s) 2015</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</citedby><cites>FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26366136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timmerman, Marieke E.</creatorcontrib><creatorcontrib>Hoefsloot, Huub C. J.</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><creatorcontrib>Ceulemans, Eva</creatorcontrib><title>Scaling in ANOVA-simultaneous component analysis</title><title>Metabolomics</title><addtitle>Metabolomics</addtitle><addtitle>Metabolomics</addtitle><description>In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Developmental Biology</subject><subject>Life Sciences</subject><subject>Molecular Medicine</subject><subject>Original</subject><subject>Original Article</subject><issn>1573-3882</issn><issn>1573-3890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kUlLA0EQhRtRTIz-AC8S8OJltKpnersIIbhBMAeXa9PT6cQJs8TpGSH_3g4TQxQ8VUF99aoej5BzhGsEEDceMQYeAbIIhGSRPCB9ZCKOYqngcNdL2iMn3i8BkkQJOCY9ymPOMeZ9Ai_W5Fm5GGblcPQ8fR9FPivavDGlq1o_tFWxqkpXNkNTmnztM39KjuYm9-5sWwfk7f7udfwYTaYPT-PRJLIsgSYyaSLsjFkquY2pQQScCSOtpCxOLeUOE6Z4aqwzMlWKM4moDDALqXNmlsQDctvprtq0cDMbfqhNrld1Vph6rSuT6d-TMvvQi-pLJ4wpBBEErrYCdfXZOt_oIvPW5XlnTaOknFOJCgN6-QddVm0dDAdKgKKMMrERxI6ydeV97ea7ZxD0Jg_d5aFDHnqTh5Zh52LfxW7jJ4AA0A7wYVQuXL13-l_VbxjLlUE</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Timmerman, Marieke E.</creator><creator>Hoefsloot, Huub C. J.</creator><creator>Smilde, Age K.</creator><creator>Ceulemans, Eva</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2015</creationdate><title>Scaling in ANOVA-simultaneous component analysis</title><author>Timmerman, Marieke E. ; Hoefsloot, Huub C. J. ; Smilde, Age K. ; Ceulemans, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Developmental Biology</topic><topic>Life Sciences</topic><topic>Molecular Medicine</topic><topic>Original</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timmerman, Marieke E.</creatorcontrib><creatorcontrib>Hoefsloot, Huub C. J.</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><creatorcontrib>Ceulemans, Eva</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timmerman, Marieke E.</au><au>Hoefsloot, Huub C. J.</au><au>Smilde, Age K.</au><au>Ceulemans, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling in ANOVA-simultaneous component analysis</atitle><jtitle>Metabolomics</jtitle><stitle>Metabolomics</stitle><addtitle>Metabolomics</addtitle><date>2015</date><risdate>2015</risdate><volume>11</volume><issue>5</issue><spage>1265</spage><epage>1276</epage><pages>1265-1276</pages><issn>1573-3882</issn><eissn>1573-3890</eissn><abstract>In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26366136</pmid><doi>10.1007/s11306-015-0785-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-3882 |
ispartof | Metabolomics, 2015, Vol.11 (5), p.1265-1276 |
issn | 1573-3882 1573-3890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4559107 |
source | Springer Nature |
subjects | Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Developmental Biology Life Sciences Molecular Medicine Original Original Article |
title | Scaling in ANOVA-simultaneous component analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20in%20ANOVA-simultaneous%20component%20analysis&rft.jtitle=Metabolomics&rft.au=Timmerman,%20Marieke%20E.&rft.date=2015&rft.volume=11&rft.issue=5&rft.spage=1265&rft.epage=1276&rft.pages=1265-1276&rft.issn=1573-3882&rft.eissn=1573-3890&rft_id=info:doi/10.1007/s11306-015-0785-8&rft_dat=%3Cproquest_pubme%3E1826628191%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709252577&rft_id=info:pmid/26366136&rfr_iscdi=true |