Loading…

Scaling in ANOVA-simultaneous component analysis

In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines an...

Full description

Saved in:
Bibliographic Details
Published in:Metabolomics 2015, Vol.11 (5), p.1265-1276
Main Authors: Timmerman, Marieke E., Hoefsloot, Huub C. J., Smilde, Age K., Ceulemans, Eva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43
cites cdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43
container_end_page 1276
container_issue 5
container_start_page 1265
container_title Metabolomics
container_volume 11
creator Timmerman, Marieke E.
Hoefsloot, Huub C. J.
Smilde, Age K.
Ceulemans, Eva
description In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.
doi_str_mv 10.1007/s11306-015-0785-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4559107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826628191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</originalsourceid><addsrcrecordid>eNp1kUlLA0EQhRtRTIz-AC8S8OJltKpnersIIbhBMAeXa9PT6cQJs8TpGSH_3g4TQxQ8VUF99aoej5BzhGsEEDceMQYeAbIIhGSRPCB9ZCKOYqngcNdL2iMn3i8BkkQJOCY9ymPOMeZ9Ai_W5Fm5GGblcPQ8fR9FPivavDGlq1o_tFWxqkpXNkNTmnztM39KjuYm9-5sWwfk7f7udfwYTaYPT-PRJLIsgSYyaSLsjFkquY2pQQScCSOtpCxOLeUOE6Z4aqwzMlWKM4moDDALqXNmlsQDctvprtq0cDMbfqhNrld1Vph6rSuT6d-TMvvQi-pLJ4wpBBEErrYCdfXZOt_oIvPW5XlnTaOknFOJCgN6-QddVm0dDAdKgKKMMrERxI6ydeV97ea7ZxD0Jg_d5aFDHnqTh5Zh52LfxW7jJ4AA0A7wYVQuXL13-l_VbxjLlUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709252577</pqid></control><display><type>article</type><title>Scaling in ANOVA-simultaneous component analysis</title><source>Springer Nature</source><creator>Timmerman, Marieke E. ; Hoefsloot, Huub C. J. ; Smilde, Age K. ; Ceulemans, Eva</creator><creatorcontrib>Timmerman, Marieke E. ; Hoefsloot, Huub C. J. ; Smilde, Age K. ; Ceulemans, Eva</creatorcontrib><description>In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.</description><identifier>ISSN: 1573-3882</identifier><identifier>EISSN: 1573-3890</identifier><identifier>DOI: 10.1007/s11306-015-0785-8</identifier><identifier>PMID: 26366136</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Developmental Biology ; Life Sciences ; Molecular Medicine ; Original ; Original Article</subject><ispartof>Metabolomics, 2015, Vol.11 (5), p.1265-1276</ispartof><rights>The Author(s) 2015</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</citedby><cites>FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26366136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timmerman, Marieke E.</creatorcontrib><creatorcontrib>Hoefsloot, Huub C. J.</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><creatorcontrib>Ceulemans, Eva</creatorcontrib><title>Scaling in ANOVA-simultaneous component analysis</title><title>Metabolomics</title><addtitle>Metabolomics</addtitle><addtitle>Metabolomics</addtitle><description>In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Developmental Biology</subject><subject>Life Sciences</subject><subject>Molecular Medicine</subject><subject>Original</subject><subject>Original Article</subject><issn>1573-3882</issn><issn>1573-3890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kUlLA0EQhRtRTIz-AC8S8OJltKpnersIIbhBMAeXa9PT6cQJs8TpGSH_3g4TQxQ8VUF99aoej5BzhGsEEDceMQYeAbIIhGSRPCB9ZCKOYqngcNdL2iMn3i8BkkQJOCY9ymPOMeZ9Ai_W5Fm5GGblcPQ8fR9FPivavDGlq1o_tFWxqkpXNkNTmnztM39KjuYm9-5sWwfk7f7udfwYTaYPT-PRJLIsgSYyaSLsjFkquY2pQQScCSOtpCxOLeUOE6Z4aqwzMlWKM4moDDALqXNmlsQDctvprtq0cDMbfqhNrld1Vph6rSuT6d-TMvvQi-pLJ4wpBBEErrYCdfXZOt_oIvPW5XlnTaOknFOJCgN6-QddVm0dDAdKgKKMMrERxI6ydeV97ea7ZxD0Jg_d5aFDHnqTh5Zh52LfxW7jJ4AA0A7wYVQuXL13-l_VbxjLlUE</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Timmerman, Marieke E.</creator><creator>Hoefsloot, Huub C. J.</creator><creator>Smilde, Age K.</creator><creator>Ceulemans, Eva</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2015</creationdate><title>Scaling in ANOVA-simultaneous component analysis</title><author>Timmerman, Marieke E. ; Hoefsloot, Huub C. J. ; Smilde, Age K. ; Ceulemans, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Developmental Biology</topic><topic>Life Sciences</topic><topic>Molecular Medicine</topic><topic>Original</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timmerman, Marieke E.</creatorcontrib><creatorcontrib>Hoefsloot, Huub C. J.</creatorcontrib><creatorcontrib>Smilde, Age K.</creatorcontrib><creatorcontrib>Ceulemans, Eva</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timmerman, Marieke E.</au><au>Hoefsloot, Huub C. J.</au><au>Smilde, Age K.</au><au>Ceulemans, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling in ANOVA-simultaneous component analysis</atitle><jtitle>Metabolomics</jtitle><stitle>Metabolomics</stitle><addtitle>Metabolomics</addtitle><date>2015</date><risdate>2015</risdate><volume>11</volume><issue>5</issue><spage>1265</spage><epage>1276</epage><pages>1265-1276</pages><issn>1573-3882</issn><eissn>1573-3890</eissn><abstract>In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26366136</pmid><doi>10.1007/s11306-015-0785-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-3882
ispartof Metabolomics, 2015, Vol.11 (5), p.1265-1276
issn 1573-3882
1573-3890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4559107
source Springer Nature
subjects Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Developmental Biology
Life Sciences
Molecular Medicine
Original
Original Article
title Scaling in ANOVA-simultaneous component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20in%20ANOVA-simultaneous%20component%20analysis&rft.jtitle=Metabolomics&rft.au=Timmerman,%20Marieke%20E.&rft.date=2015&rft.volume=11&rft.issue=5&rft.spage=1265&rft.epage=1276&rft.pages=1265-1276&rft.issn=1573-3882&rft.eissn=1573-3890&rft_id=info:doi/10.1007/s11306-015-0785-8&rft_dat=%3Cproquest_pubme%3E1826628191%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-ab47cd5c286c32a1101d7a8c8253bc26e14596bacea8b99658119a05c0beead43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709252577&rft_id=info:pmid/26366136&rfr_iscdi=true