Loading…

Metabolic fingerprinting of Lactobacillus paracasei: the optimal quenching strategy

Quenching in cold buffered methanol at -40 °C has long been the preferred method for sub-second inactivation of cell metabolism during metabolic fingerprinting. However, methanol is known to cause intracellular metabolite leakage of microbial cells, making the distinction between intra- and extracel...

Full description

Saved in:
Bibliographic Details
Published in:Microbial cell factories 2015-09, Vol.14 (1), p.132-132, Article 132
Main Authors: Jäpelt, Kristina B, Christensen, Jan H, Villas-Bôas, Silas G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quenching in cold buffered methanol at -40 °C has long been the preferred method for sub-second inactivation of cell metabolism during metabolic fingerprinting. However, methanol is known to cause intracellular metabolite leakage of microbial cells, making the distinction between intra- and extracellular metabolites in microbial systems challenging. In this paper, we tested three quenching protocols proposed for microbial cultures: fast filtration, cold buffered methanol and cold glycerol saline. Our results clearly showed that cold glycerol saline quenching resulted in the best recovery of intracellular metabolites in Lactobacillus paracasei subsp. paracasei (L. paracasei). Membrane integrity assayed by propidium iodide revealed that approximately 100 % [Corrected] of the L. paracasei cell membranes were damaged by contact with the cold buffered methanol solution, whilst cold glycerol saline quenching led to minimal cell damage. Due to the nature of the L. paracasei culture, fast filtration took several minutes, which is far from ideal for metabolites with high intracellular turnover rates. The implementation of a reliable, reproducible quenching method is essential within the metabolomics community. Cold glycerol saline prevented leakage of intracellular metabolites, and, thus, allowed more accurate determinations of intracellular metabolite levels.
ISSN:1475-2859
1475-2859
DOI:10.1186/s12934-015-0322-5