Loading…

Martian outflow channels: How did their source aquifers form and why did they drain so rapidly?

Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-09, Vol.5 (1), p.13404-13404, Article 13404
Main Authors: Rodriguez, J. Alexis P., Kargel, Jeffrey S., Baker, Victor R., Gulick, Virginia C., Berman, Daniel C., Fairén, Alberto G., Linares, Rogelio, Zarroca, Mario, Yan, Jianguo, Miyamoto, Hideaki, Glines, Natalie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial and fluvial erosion and sedimentation.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep13404