Loading…

Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans

We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-09, Vol.5 (1), p.13865-13865, Article 13865
Main Authors: Tyler, William J., Boasso, Alyssa M., Mortimore, Hailey M., Silva, Rhonda S., Charlesworth, Jonathan D., Marlin, Michelle A., Aebersold, Kirsten, Aven, Linh, Wetmore, Daniel Z., Pal, Sumon K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep13865