Loading…

Canonical Inflammasomes Drive IFN-γ to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium

The inflammatory caspases 1 and 11 are activated in response to different agonists and act independently to induce pyroptosis. In the context of IL-1β/IL-18 secretion, however, in vitro studies indicate that caspase-11 acts upstream of NLRP3 and caspase-1. By contrast, studying infection in vivo by...

Full description

Saved in:
Bibliographic Details
Published in:Cell host & microbe 2015-09, Vol.18 (3), p.320-332
Main Authors: Aachoui, Youssef, Kajiwara, Yuji, Leaf, Irina A., Mao, Dat, Ting, Jenny P.-Y., Coers, Jörn, Aderem, Alan, Buxbaum, Joseph D., Miao, Edward A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-f2374dce7188c805df50dc406e149e25d343d63ea273b3f07ebdd4cd1922be543
cites cdi_FETCH-LOGICAL-c525t-f2374dce7188c805df50dc406e149e25d343d63ea273b3f07ebdd4cd1922be543
container_end_page 332
container_issue 3
container_start_page 320
container_title Cell host & microbe
container_volume 18
creator Aachoui, Youssef
Kajiwara, Yuji
Leaf, Irina A.
Mao, Dat
Ting, Jenny P.-Y.
Coers, Jörn
Aderem, Alan
Buxbaum, Joseph D.
Miao, Edward A.
description The inflammatory caspases 1 and 11 are activated in response to different agonists and act independently to induce pyroptosis. In the context of IL-1β/IL-18 secretion, however, in vitro studies indicate that caspase-11 acts upstream of NLRP3 and caspase-1. By contrast, studying infection in vivo by the cytosol-invasive bacterium Burkholderia thailandensis, we find that caspase-1 activity is required upstream of caspase-11 to control infection. Caspase-1-activated IL-18 induces IFN-γ to prime caspase-11 and rapidly clear B. thailandensis infection. In the absence of IL-18, bacterial burdens persist, eventually triggering other signals that induce IFN-γ. Whereas IFN-γ was essential, endogenous type I interferons were insufficient to prime caspase-11. Although mice transgenic for caspase-4, the human ortholog of caspase-11, cleared B. thailandensis in vivo, they did not strictly require IFN-γ priming. Thus, caspase-1 provides priming signals upstream of caspase-11 but not caspase-4 during murine defense against a cytosol-invasive bacterium. [Display omitted] •Caspase-1 and -11 differentially protect against cytosol-invasive B. thailandensis•Canonical inflammasome NLRC4- or NLRP3-activated IL-18 is required for defense•IL-18 drives a rapid IFN-γ response, which is critical for caspase-11 priming in vivo•A CASP4 transgene complements Casp1−/−Casp11−/− mice independently of IFN-γ Caspase-1 and -11 are critical in defense against the cytosol-invasive bacterium Burkholderia thailandensis. Aachoui et al. show that caspase-1-driven IL-18 induces IFN-γ to prime caspase-11 for rapid defense against B. thailandensis in vivo. Unlike murine caspase-11, its human ortholog caspase-4 may not strictly require IFN-γ priming to defend against B. thailandensis.
doi_str_mv 10.1016/j.chom.2015.07.016
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4567510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S193131281500308X</els_id><sourcerecordid>1711544206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f2374dce7188c805df50dc406e149e25d343d63ea273b3f07ebdd4cd1922be543</originalsourceid><addsrcrecordid>eNp9kc9uFDEMxkcIREvhBTigHLnMEOfPZEdCSDCldKWqcIBzlE083axmkiWZXanPxXv0mciypYJLT7bszz9b_qrqNdAGKLTvNo1dx6lhFGRDVVNKT6pT6LioW9p2T__kUHNgi5PqRc4bSqWkCp5XJ6zljHZdd1qtexNi8NaMZBmG0UyTyXHCTM6T3yNZXlzXd7_IHMm35Cckvclbk7EGID6QcxwwZCTmxviQZ2JIfzvHHMd6GfYmHwCfjJ0x-d30sno2mDHjq_t4Vv24-Py9v6yvvn5Z9h-vaiuZnOuBcSWcRQWLhV1Q6QZJnRW0RRAdMum44K7laJjiKz5QhSvnhHXQMbZCKfhZ9eHI3e5WExZSmJMZ9bacb9Ktjsbr_zvBr_VN3GshWyWBFsDbe0CKP3eYZz35bHEcTcC4yxoUgBSC0bZI2VFqU8w54fCwBqg-WKQ3-mCRPlikqdKlVIbe_Hvgw8hfT4rg_VGA5U17j0ln6zFYdD6hnbWL_jH-bz-wpCE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711544206</pqid></control><display><type>article</type><title>Canonical Inflammasomes Drive IFN-γ to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Aachoui, Youssef ; Kajiwara, Yuji ; Leaf, Irina A. ; Mao, Dat ; Ting, Jenny P.-Y. ; Coers, Jörn ; Aderem, Alan ; Buxbaum, Joseph D. ; Miao, Edward A.</creator><creatorcontrib>Aachoui, Youssef ; Kajiwara, Yuji ; Leaf, Irina A. ; Mao, Dat ; Ting, Jenny P.-Y. ; Coers, Jörn ; Aderem, Alan ; Buxbaum, Joseph D. ; Miao, Edward A.</creatorcontrib><description>The inflammatory caspases 1 and 11 are activated in response to different agonists and act independently to induce pyroptosis. In the context of IL-1β/IL-18 secretion, however, in vitro studies indicate that caspase-11 acts upstream of NLRP3 and caspase-1. By contrast, studying infection in vivo by the cytosol-invasive bacterium Burkholderia thailandensis, we find that caspase-1 activity is required upstream of caspase-11 to control infection. Caspase-1-activated IL-18 induces IFN-γ to prime caspase-11 and rapidly clear B. thailandensis infection. In the absence of IL-18, bacterial burdens persist, eventually triggering other signals that induce IFN-γ. Whereas IFN-γ was essential, endogenous type I interferons were insufficient to prime caspase-11. Although mice transgenic for caspase-4, the human ortholog of caspase-11, cleared B. thailandensis in vivo, they did not strictly require IFN-γ priming. Thus, caspase-1 provides priming signals upstream of caspase-11 but not caspase-4 during murine defense against a cytosol-invasive bacterium. [Display omitted] •Caspase-1 and -11 differentially protect against cytosol-invasive B. thailandensis•Canonical inflammasome NLRC4- or NLRP3-activated IL-18 is required for defense•IL-18 drives a rapid IFN-γ response, which is critical for caspase-11 priming in vivo•A CASP4 transgene complements Casp1−/−Casp11−/− mice independently of IFN-γ Caspase-1 and -11 are critical in defense against the cytosol-invasive bacterium Burkholderia thailandensis. Aachoui et al. show that caspase-1-driven IL-18 induces IFN-γ to prime caspase-11 for rapid defense against B. thailandensis in vivo. Unlike murine caspase-11, its human ortholog caspase-4 may not strictly require IFN-γ priming to defend against B. thailandensis.</description><identifier>ISSN: 1931-3128</identifier><identifier>ISSN: 1934-6069</identifier><identifier>EISSN: 1934-6069</identifier><identifier>DOI: 10.1016/j.chom.2015.07.016</identifier><identifier>PMID: 26320999</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Burkholderia - immunology ; Caspase 1 - metabolism ; Caspases - metabolism ; Caspases, Initiator - metabolism ; Cytosol - microbiology ; Humans ; Inflammasomes - metabolism ; Interferon-gamma - metabolism ; Interleukin-18 - metabolism ; Mice ; Mice, Transgenic ; Signal Transduction</subject><ispartof>Cell host &amp; microbe, 2015-09, Vol.18 (3), p.320-332</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f2374dce7188c805df50dc406e149e25d343d63ea273b3f07ebdd4cd1922be543</citedby><cites>FETCH-LOGICAL-c525t-f2374dce7188c805df50dc406e149e25d343d63ea273b3f07ebdd4cd1922be543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26320999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aachoui, Youssef</creatorcontrib><creatorcontrib>Kajiwara, Yuji</creatorcontrib><creatorcontrib>Leaf, Irina A.</creatorcontrib><creatorcontrib>Mao, Dat</creatorcontrib><creatorcontrib>Ting, Jenny P.-Y.</creatorcontrib><creatorcontrib>Coers, Jörn</creatorcontrib><creatorcontrib>Aderem, Alan</creatorcontrib><creatorcontrib>Buxbaum, Joseph D.</creatorcontrib><creatorcontrib>Miao, Edward A.</creatorcontrib><title>Canonical Inflammasomes Drive IFN-γ to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium</title><title>Cell host &amp; microbe</title><addtitle>Cell Host Microbe</addtitle><description>The inflammatory caspases 1 and 11 are activated in response to different agonists and act independently to induce pyroptosis. In the context of IL-1β/IL-18 secretion, however, in vitro studies indicate that caspase-11 acts upstream of NLRP3 and caspase-1. By contrast, studying infection in vivo by the cytosol-invasive bacterium Burkholderia thailandensis, we find that caspase-1 activity is required upstream of caspase-11 to control infection. Caspase-1-activated IL-18 induces IFN-γ to prime caspase-11 and rapidly clear B. thailandensis infection. In the absence of IL-18, bacterial burdens persist, eventually triggering other signals that induce IFN-γ. Whereas IFN-γ was essential, endogenous type I interferons were insufficient to prime caspase-11. Although mice transgenic for caspase-4, the human ortholog of caspase-11, cleared B. thailandensis in vivo, they did not strictly require IFN-γ priming. Thus, caspase-1 provides priming signals upstream of caspase-11 but not caspase-4 during murine defense against a cytosol-invasive bacterium. [Display omitted] •Caspase-1 and -11 differentially protect against cytosol-invasive B. thailandensis•Canonical inflammasome NLRC4- or NLRP3-activated IL-18 is required for defense•IL-18 drives a rapid IFN-γ response, which is critical for caspase-11 priming in vivo•A CASP4 transgene complements Casp1−/−Casp11−/− mice independently of IFN-γ Caspase-1 and -11 are critical in defense against the cytosol-invasive bacterium Burkholderia thailandensis. Aachoui et al. show that caspase-1-driven IL-18 induces IFN-γ to prime caspase-11 for rapid defense against B. thailandensis in vivo. Unlike murine caspase-11, its human ortholog caspase-4 may not strictly require IFN-γ priming to defend against B. thailandensis.</description><subject>Animals</subject><subject>Burkholderia - immunology</subject><subject>Caspase 1 - metabolism</subject><subject>Caspases - metabolism</subject><subject>Caspases, Initiator - metabolism</subject><subject>Cytosol - microbiology</subject><subject>Humans</subject><subject>Inflammasomes - metabolism</subject><subject>Interferon-gamma - metabolism</subject><subject>Interleukin-18 - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Signal Transduction</subject><issn>1931-3128</issn><issn>1934-6069</issn><issn>1934-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc9uFDEMxkcIREvhBTigHLnMEOfPZEdCSDCldKWqcIBzlE083axmkiWZXanPxXv0mciypYJLT7bszz9b_qrqNdAGKLTvNo1dx6lhFGRDVVNKT6pT6LioW9p2T__kUHNgi5PqRc4bSqWkCp5XJ6zljHZdd1qtexNi8NaMZBmG0UyTyXHCTM6T3yNZXlzXd7_IHMm35Cckvclbk7EGID6QcxwwZCTmxviQZ2JIfzvHHMd6GfYmHwCfjJ0x-d30sno2mDHjq_t4Vv24-Py9v6yvvn5Z9h-vaiuZnOuBcSWcRQWLhV1Q6QZJnRW0RRAdMum44K7laJjiKz5QhSvnhHXQMbZCKfhZ9eHI3e5WExZSmJMZ9bacb9Ktjsbr_zvBr_VN3GshWyWBFsDbe0CKP3eYZz35bHEcTcC4yxoUgBSC0bZI2VFqU8w54fCwBqg-WKQ3-mCRPlikqdKlVIbe_Hvgw8hfT4rg_VGA5U17j0ln6zFYdD6hnbWL_jH-bz-wpCE</recordid><startdate>20150909</startdate><enddate>20150909</enddate><creator>Aachoui, Youssef</creator><creator>Kajiwara, Yuji</creator><creator>Leaf, Irina A.</creator><creator>Mao, Dat</creator><creator>Ting, Jenny P.-Y.</creator><creator>Coers, Jörn</creator><creator>Aderem, Alan</creator><creator>Buxbaum, Joseph D.</creator><creator>Miao, Edward A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150909</creationdate><title>Canonical Inflammasomes Drive IFN-γ to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium</title><author>Aachoui, Youssef ; Kajiwara, Yuji ; Leaf, Irina A. ; Mao, Dat ; Ting, Jenny P.-Y. ; Coers, Jörn ; Aderem, Alan ; Buxbaum, Joseph D. ; Miao, Edward A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f2374dce7188c805df50dc406e149e25d343d63ea273b3f07ebdd4cd1922be543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Burkholderia - immunology</topic><topic>Caspase 1 - metabolism</topic><topic>Caspases - metabolism</topic><topic>Caspases, Initiator - metabolism</topic><topic>Cytosol - microbiology</topic><topic>Humans</topic><topic>Inflammasomes - metabolism</topic><topic>Interferon-gamma - metabolism</topic><topic>Interleukin-18 - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aachoui, Youssef</creatorcontrib><creatorcontrib>Kajiwara, Yuji</creatorcontrib><creatorcontrib>Leaf, Irina A.</creatorcontrib><creatorcontrib>Mao, Dat</creatorcontrib><creatorcontrib>Ting, Jenny P.-Y.</creatorcontrib><creatorcontrib>Coers, Jörn</creatorcontrib><creatorcontrib>Aderem, Alan</creatorcontrib><creatorcontrib>Buxbaum, Joseph D.</creatorcontrib><creatorcontrib>Miao, Edward A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell host &amp; microbe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aachoui, Youssef</au><au>Kajiwara, Yuji</au><au>Leaf, Irina A.</au><au>Mao, Dat</au><au>Ting, Jenny P.-Y.</au><au>Coers, Jörn</au><au>Aderem, Alan</au><au>Buxbaum, Joseph D.</au><au>Miao, Edward A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical Inflammasomes Drive IFN-γ to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium</atitle><jtitle>Cell host &amp; microbe</jtitle><addtitle>Cell Host Microbe</addtitle><date>2015-09-09</date><risdate>2015</risdate><volume>18</volume><issue>3</issue><spage>320</spage><epage>332</epage><pages>320-332</pages><issn>1931-3128</issn><issn>1934-6069</issn><eissn>1934-6069</eissn><abstract>The inflammatory caspases 1 and 11 are activated in response to different agonists and act independently to induce pyroptosis. In the context of IL-1β/IL-18 secretion, however, in vitro studies indicate that caspase-11 acts upstream of NLRP3 and caspase-1. By contrast, studying infection in vivo by the cytosol-invasive bacterium Burkholderia thailandensis, we find that caspase-1 activity is required upstream of caspase-11 to control infection. Caspase-1-activated IL-18 induces IFN-γ to prime caspase-11 and rapidly clear B. thailandensis infection. In the absence of IL-18, bacterial burdens persist, eventually triggering other signals that induce IFN-γ. Whereas IFN-γ was essential, endogenous type I interferons were insufficient to prime caspase-11. Although mice transgenic for caspase-4, the human ortholog of caspase-11, cleared B. thailandensis in vivo, they did not strictly require IFN-γ priming. Thus, caspase-1 provides priming signals upstream of caspase-11 but not caspase-4 during murine defense against a cytosol-invasive bacterium. [Display omitted] •Caspase-1 and -11 differentially protect against cytosol-invasive B. thailandensis•Canonical inflammasome NLRC4- or NLRP3-activated IL-18 is required for defense•IL-18 drives a rapid IFN-γ response, which is critical for caspase-11 priming in vivo•A CASP4 transgene complements Casp1−/−Casp11−/− mice independently of IFN-γ Caspase-1 and -11 are critical in defense against the cytosol-invasive bacterium Burkholderia thailandensis. Aachoui et al. show that caspase-1-driven IL-18 induces IFN-γ to prime caspase-11 for rapid defense against B. thailandensis in vivo. Unlike murine caspase-11, its human ortholog caspase-4 may not strictly require IFN-γ priming to defend against B. thailandensis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26320999</pmid><doi>10.1016/j.chom.2015.07.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-3128
ispartof Cell host & microbe, 2015-09, Vol.18 (3), p.320-332
issn 1931-3128
1934-6069
1934-6069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4567510
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Burkholderia - immunology
Caspase 1 - metabolism
Caspases - metabolism
Caspases, Initiator - metabolism
Cytosol - microbiology
Humans
Inflammasomes - metabolism
Interferon-gamma - metabolism
Interleukin-18 - metabolism
Mice
Mice, Transgenic
Signal Transduction
title Canonical Inflammasomes Drive IFN-γ to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20Inflammasomes%20Drive%20IFN-%CE%B3%20to%20Prime%20Caspase-11%20in%20Defense%20against%20a%20Cytosol-Invasive%20Bacterium&rft.jtitle=Cell%20host%20&%20microbe&rft.au=Aachoui,%20Youssef&rft.date=2015-09-09&rft.volume=18&rft.issue=3&rft.spage=320&rft.epage=332&rft.pages=320-332&rft.issn=1931-3128&rft.eissn=1934-6069&rft_id=info:doi/10.1016/j.chom.2015.07.016&rft_dat=%3Cproquest_pubme%3E1711544206%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-f2374dce7188c805df50dc406e149e25d343d63ea273b3f07ebdd4cd1922be543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1711544206&rft_id=info:pmid/26320999&rfr_iscdi=true