Loading…
On Training Efficiency and Computational Costs of a Feed Forward Neural Network: A Review
A comprehensive review on the problem of choosing a suitable activation function for the hidden layer of a feed forward neural network has been widely investigated. Since the nonlinear component of a neural network is the main contributor to the network mapping capabilities, the different choices th...
Saved in:
Published in: | Computational Intelligence and Neuroscience 2015-01, Vol.2015 (2015), p.1252-1264 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A comprehensive review on the problem of choosing a suitable activation function for the hidden layer of a feed forward neural network has been widely investigated. Since the nonlinear component of a neural network is the main contributor to the network mapping capabilities, the different choices that may lead to enhanced performances, in terms of training, generalization, or computational costs, are analyzed, both in general-purpose and in embedded computing environments. Finally, a strategy to convert a network configuration between different activation functions without altering the network mapping capabilities will be presented. |
---|---|
ISSN: | 1687-5265 1687-5273 |
DOI: | 10.1155/2015/818243 |