Loading…
Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways
Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, C...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2015-09, Vol.112 (36), p.11341-11346 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3 |
container_end_page | 11346 |
container_issue | 36 |
container_start_page | 11341 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Willett, Julia L. E. Gucinski, Grant C. Fatherree, Jackson P. Low, David A. Hayes, Christopher S. |
description | Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria. |
doi_str_mv | 10.1073/pnas.1512124112 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4568652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464993</jstor_id><sourcerecordid>26464993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</originalsourceid><addsrcrecordid>eNpdks1v1DAQxS0EotvCmRMoEpde0s74I3EuSGjFl1SJC5w4WE5id73K2iF2aPe_x2GXbeE0lvyb53nzTMgrhCuEml2PXscrFEiRckT6hKwQGiwr3sBTsgKgdSk55WfkPMYtADRCwnNyRisGohFiRX6sg0-6S2VvRuN741NxO4W7tCmc37jWJRd8kcK987Ew9-MQXCp285DcOJiMPHR1ZhjKfJj2xajT5k7v4wvyzOohmpfHekG-f_zwbf25vPn66cv6_U3Z8UqmsrVY2Y6BBWaFaa0WhvPa1Ng3trfZHGjGpTZ1X1sJiA2yFqHqKe2AN51mF-TdQXec253pu2UKPahxcjs97VXQTv17491G3YZfiotKVoJmgcujwBR-ziYmtXNxMaS9CXNUWOetSgF_0Lf_odswTz7bWygmJJcVZur6QHVTiHEy9jQMglqCU0tw6iG43PHmsYcT_zepDBRHYOk8ySFVrMqF8eXV1wdkG1OYHknw_B8axn4DXZKq7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713584861</pqid></control><display><type>article</type><title>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>NCBI_PubMed Central(免费)</source><creator>Willett, Julia L. E. ; Gucinski, Grant C. ; Fatherree, Jackson P. ; Low, David A. ; Hayes, Christopher S.</creator><creatorcontrib>Willett, Julia L. E. ; Gucinski, Grant C. ; Fatherree, Jackson P. ; Low, David A. ; Hayes, Christopher S.</creatorcontrib><description>Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1512124112</identifier><identifier>PMID: 26305955</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Bacterial Adhesion - genetics ; Bacterial Adhesion - physiology ; Bacterial Toxins - metabolism ; Binding sites ; Binding Sites - genetics ; Biological Sciences ; Cells ; Contact Inhibition - genetics ; Contact Inhibition - physiology ; Enzyme kinetics ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gram-negative bacteria ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; Protein Transport - genetics ; Proteins ; Sequence Homology, Amino Acid ; Signal Transduction - genetics ; Signal Transduction - physiology ; Species Specificity ; Toxins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (36), p.11341-11346</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 8, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</citedby><cites>FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464993$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464993$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26305955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willett, Julia L. E.</creatorcontrib><creatorcontrib>Gucinski, Grant C.</creatorcontrib><creatorcontrib>Fatherree, Jackson P.</creatorcontrib><creatorcontrib>Low, David A.</creatorcontrib><creatorcontrib>Hayes, Christopher S.</creatorcontrib><title>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Adhesion - genetics</subject><subject>Bacterial Adhesion - physiology</subject><subject>Bacterial Toxins - metabolism</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Contact Inhibition - genetics</subject><subject>Contact Inhibition - physiology</subject><subject>Enzyme kinetics</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gram-negative bacteria</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Protein Transport - genetics</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Species Specificity</subject><subject>Toxins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdks1v1DAQxS0EotvCmRMoEpde0s74I3EuSGjFl1SJC5w4WE5id73K2iF2aPe_x2GXbeE0lvyb53nzTMgrhCuEml2PXscrFEiRckT6hKwQGiwr3sBTsgKgdSk55WfkPMYtADRCwnNyRisGohFiRX6sg0-6S2VvRuN741NxO4W7tCmc37jWJRd8kcK987Ew9-MQXCp285DcOJiMPHR1ZhjKfJj2xajT5k7v4wvyzOohmpfHekG-f_zwbf25vPn66cv6_U3Z8UqmsrVY2Y6BBWaFaa0WhvPa1Ng3trfZHGjGpTZ1X1sJiA2yFqHqKe2AN51mF-TdQXec253pu2UKPahxcjs97VXQTv17491G3YZfiotKVoJmgcujwBR-ziYmtXNxMaS9CXNUWOetSgF_0Lf_odswTz7bWygmJJcVZur6QHVTiHEy9jQMglqCU0tw6iG43PHmsYcT_zepDBRHYOk8ySFVrMqF8eXV1wdkG1OYHknw_B8axn4DXZKq7A</recordid><startdate>20150908</startdate><enddate>20150908</enddate><creator>Willett, Julia L. E.</creator><creator>Gucinski, Grant C.</creator><creator>Fatherree, Jackson P.</creator><creator>Low, David A.</creator><creator>Hayes, Christopher S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150908</creationdate><title>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</title><author>Willett, Julia L. E. ; Gucinski, Grant C. ; Fatherree, Jackson P. ; Low, David A. ; Hayes, Christopher S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Adhesion - genetics</topic><topic>Bacterial Adhesion - physiology</topic><topic>Bacterial Toxins - metabolism</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Contact Inhibition - genetics</topic><topic>Contact Inhibition - physiology</topic><topic>Enzyme kinetics</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gram-negative bacteria</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Protein Transport - genetics</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Species Specificity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willett, Julia L. E.</creatorcontrib><creatorcontrib>Gucinski, Grant C.</creatorcontrib><creatorcontrib>Fatherree, Jackson P.</creatorcontrib><creatorcontrib>Low, David A.</creatorcontrib><creatorcontrib>Hayes, Christopher S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willett, Julia L. E.</au><au>Gucinski, Grant C.</au><au>Fatherree, Jackson P.</au><au>Low, David A.</au><au>Hayes, Christopher S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-09-08</date><risdate>2015</risdate><volume>112</volume><issue>36</issue><spage>11341</spage><epage>11346</epage><pages>11341-11346</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26305955</pmid><doi>10.1073/pnas.1512124112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (36), p.11341-11346 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4568652 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; NCBI_PubMed Central(免费) |
subjects | Amino Acid Sequence Bacterial Adhesion - genetics Bacterial Adhesion - physiology Bacterial Toxins - metabolism Binding sites Binding Sites - genetics Biological Sciences Cells Contact Inhibition - genetics Contact Inhibition - physiology Enzyme kinetics Escherichia coli - classification Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gram-negative bacteria Membrane Proteins - genetics Membrane Proteins - metabolism Microscopy, Fluorescence Molecular Sequence Data Mutation Protein Transport - genetics Proteins Sequence Homology, Amino Acid Signal Transduction - genetics Signal Transduction - physiology Species Specificity Toxins |
title | Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact-dependent%20growth%20inhibition%20toxins%20exploit%20multiple%20independent%20cell-entry%20pathways&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Willett,%20Julia%20L.%20E.&rft.date=2015-09-08&rft.volume=112&rft.issue=36&rft.spage=11341&rft.epage=11346&rft.pages=11341-11346&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1512124112&rft_dat=%3Cjstor_pubme%3E26464993%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1713584861&rft_id=info:pmid/26305955&rft_jstor_id=26464993&rfr_iscdi=true |