Loading…

Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways

Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, C...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2015-09, Vol.112 (36), p.11341-11346
Main Authors: Willett, Julia L. E., Gucinski, Grant C., Fatherree, Jackson P., Low, David A., Hayes, Christopher S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3
cites cdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3
container_end_page 11346
container_issue 36
container_start_page 11341
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Willett, Julia L. E.
Gucinski, Grant C.
Fatherree, Jackson P.
Low, David A.
Hayes, Christopher S.
description Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.
doi_str_mv 10.1073/pnas.1512124112
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4568652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464993</jstor_id><sourcerecordid>26464993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</originalsourceid><addsrcrecordid>eNpdks1v1DAQxS0EotvCmRMoEpde0s74I3EuSGjFl1SJC5w4WE5id73K2iF2aPe_x2GXbeE0lvyb53nzTMgrhCuEml2PXscrFEiRckT6hKwQGiwr3sBTsgKgdSk55WfkPMYtADRCwnNyRisGohFiRX6sg0-6S2VvRuN741NxO4W7tCmc37jWJRd8kcK987Ew9-MQXCp285DcOJiMPHR1ZhjKfJj2xajT5k7v4wvyzOohmpfHekG-f_zwbf25vPn66cv6_U3Z8UqmsrVY2Y6BBWaFaa0WhvPa1Ng3trfZHGjGpTZ1X1sJiA2yFqHqKe2AN51mF-TdQXec253pu2UKPahxcjs97VXQTv17491G3YZfiotKVoJmgcujwBR-ziYmtXNxMaS9CXNUWOetSgF_0Lf_odswTz7bWygmJJcVZur6QHVTiHEy9jQMglqCU0tw6iG43PHmsYcT_zepDBRHYOk8ySFVrMqF8eXV1wdkG1OYHknw_B8axn4DXZKq7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713584861</pqid></control><display><type>article</type><title>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>NCBI_PubMed Central(免费)</source><creator>Willett, Julia L. E. ; Gucinski, Grant C. ; Fatherree, Jackson P. ; Low, David A. ; Hayes, Christopher S.</creator><creatorcontrib>Willett, Julia L. E. ; Gucinski, Grant C. ; Fatherree, Jackson P. ; Low, David A. ; Hayes, Christopher S.</creatorcontrib><description>Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1512124112</identifier><identifier>PMID: 26305955</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Bacterial Adhesion - genetics ; Bacterial Adhesion - physiology ; Bacterial Toxins - metabolism ; Binding sites ; Binding Sites - genetics ; Biological Sciences ; Cells ; Contact Inhibition - genetics ; Contact Inhibition - physiology ; Enzyme kinetics ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gram-negative bacteria ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; Protein Transport - genetics ; Proteins ; Sequence Homology, Amino Acid ; Signal Transduction - genetics ; Signal Transduction - physiology ; Species Specificity ; Toxins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (36), p.11341-11346</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 8, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</citedby><cites>FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464993$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464993$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26305955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willett, Julia L. E.</creatorcontrib><creatorcontrib>Gucinski, Grant C.</creatorcontrib><creatorcontrib>Fatherree, Jackson P.</creatorcontrib><creatorcontrib>Low, David A.</creatorcontrib><creatorcontrib>Hayes, Christopher S.</creatorcontrib><title>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Adhesion - genetics</subject><subject>Bacterial Adhesion - physiology</subject><subject>Bacterial Toxins - metabolism</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Contact Inhibition - genetics</subject><subject>Contact Inhibition - physiology</subject><subject>Enzyme kinetics</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gram-negative bacteria</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Protein Transport - genetics</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Species Specificity</subject><subject>Toxins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdks1v1DAQxS0EotvCmRMoEpde0s74I3EuSGjFl1SJC5w4WE5id73K2iF2aPe_x2GXbeE0lvyb53nzTMgrhCuEml2PXscrFEiRckT6hKwQGiwr3sBTsgKgdSk55WfkPMYtADRCwnNyRisGohFiRX6sg0-6S2VvRuN741NxO4W7tCmc37jWJRd8kcK987Ew9-MQXCp285DcOJiMPHR1ZhjKfJj2xajT5k7v4wvyzOohmpfHekG-f_zwbf25vPn66cv6_U3Z8UqmsrVY2Y6BBWaFaa0WhvPa1Ng3trfZHGjGpTZ1X1sJiA2yFqHqKe2AN51mF-TdQXec253pu2UKPahxcjs97VXQTv17491G3YZfiotKVoJmgcujwBR-ziYmtXNxMaS9CXNUWOetSgF_0Lf_odswTz7bWygmJJcVZur6QHVTiHEy9jQMglqCU0tw6iG43PHmsYcT_zepDBRHYOk8ySFVrMqF8eXV1wdkG1OYHknw_B8axn4DXZKq7A</recordid><startdate>20150908</startdate><enddate>20150908</enddate><creator>Willett, Julia L. E.</creator><creator>Gucinski, Grant C.</creator><creator>Fatherree, Jackson P.</creator><creator>Low, David A.</creator><creator>Hayes, Christopher S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150908</creationdate><title>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</title><author>Willett, Julia L. E. ; Gucinski, Grant C. ; Fatherree, Jackson P. ; Low, David A. ; Hayes, Christopher S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Adhesion - genetics</topic><topic>Bacterial Adhesion - physiology</topic><topic>Bacterial Toxins - metabolism</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Contact Inhibition - genetics</topic><topic>Contact Inhibition - physiology</topic><topic>Enzyme kinetics</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gram-negative bacteria</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Protein Transport - genetics</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Species Specificity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willett, Julia L. E.</creatorcontrib><creatorcontrib>Gucinski, Grant C.</creatorcontrib><creatorcontrib>Fatherree, Jackson P.</creatorcontrib><creatorcontrib>Low, David A.</creatorcontrib><creatorcontrib>Hayes, Christopher S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willett, Julia L. E.</au><au>Gucinski, Grant C.</au><au>Fatherree, Jackson P.</au><au>Low, David A.</au><au>Hayes, Christopher S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-09-08</date><risdate>2015</risdate><volume>112</volume><issue>36</issue><spage>11341</spage><epage>11346</epage><pages>11341-11346</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI⁺ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identifiedptsG, metI, rbsC, gltK/gltJ, yciB,andftsHmutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26305955</pmid><doi>10.1073/pnas.1512124112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-09, Vol.112 (36), p.11341-11346
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4568652
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; NCBI_PubMed Central(免费)
subjects Amino Acid Sequence
Bacterial Adhesion - genetics
Bacterial Adhesion - physiology
Bacterial Toxins - metabolism
Binding sites
Binding Sites - genetics
Biological Sciences
Cells
Contact Inhibition - genetics
Contact Inhibition - physiology
Enzyme kinetics
Escherichia coli - classification
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gram-negative bacteria
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microscopy, Fluorescence
Molecular Sequence Data
Mutation
Protein Transport - genetics
Proteins
Sequence Homology, Amino Acid
Signal Transduction - genetics
Signal Transduction - physiology
Species Specificity
Toxins
title Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact-dependent%20growth%20inhibition%20toxins%20exploit%20multiple%20independent%20cell-entry%20pathways&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Willett,%20Julia%20L.%20E.&rft.date=2015-09-08&rft.volume=112&rft.issue=36&rft.spage=11341&rft.epage=11346&rft.pages=11341-11346&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1512124112&rft_dat=%3Cjstor_pubme%3E26464993%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-bf16fc30f03f5ebfa5e447e71d9fdf1510a348ae7d7f8011913b106d22c049ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1713584861&rft_id=info:pmid/26305955&rft_jstor_id=26464993&rfr_iscdi=true