Loading…

Analysis of Modification of Liver Proteome in Diabetic Rats by 2D Electrophoresis and MALDI-TOF-MS

The uncontrolled hyperglycemia can lead to disturbances in the cell structure and functions of organs. This study was performed to analyze the “differential proteome” change in rat liver associated with diabetes mellitus in relation to effects of an anti-diabetic herb, Cynodon dactylon leaf extracts...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of clinical biochemistry 2012-07, Vol.27 (3), p.221-230
Main Authors: Karthik, Dhanaraj, Ilavenil, Soundherrajan, Kaleeswaran, Balasubramanian, Ravikumar, Sivanesan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The uncontrolled hyperglycemia can lead to disturbances in the cell structure and functions of organs. This study was performed to analyze the “differential proteome” change in rat liver associated with diabetes mellitus in relation to effects of an anti-diabetic herb, Cynodon dactylon leaf extracts. Rats were intraperitoneally injected with alloxan (150 mg/kg/bw) and treated with C . dactylon leaf extracts (450 mg/kg/bw/day/orally). The liver proteins were subjected to proteome analysis using the advanced technologies i.e., 2D electrophoresis (2-DE) and mass spectrometry. Comparison of 2-DE protein distribution profiles among the livers from normal, alloxan-induced diabetic rats and alloxan-induced diabetic rats treated with C. dactylon leaves identified three proteins that were up-regulated in alloxan-induced diabetic rats i.e., nucleophosmin, l -xylulose reductase and carbonic anhydrase III which are known to be mainly involved in ribosome biogenesis, centrosome duplication, cell proliferation, tumor suppression, glucose metabolism, osmo-regulation, water–CO 2 balance and acid–base balance. These results help us to understand the elucidation of molecular mechanism connected to liver function and insulin associated with diabetes mellitus. These identified proteins were primarily involved in cell proliferation and homoeostasis of liver tissues upon the treatment with C. dactylon leaf extracts.
ISSN:0970-1915
0974-0422
DOI:10.1007/s12291-012-0209-8