Loading…

Significantly shorter Fe–S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase

Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I,...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2015-09, Vol.7 (9), p.696-702
Main Authors: Krest, Courtney M., Silakov, Alexey, Rittle, Jonathan, Yosca, Timothy H., Onderko, Elizabeth L., Calixto, Julio C., Green, Michael T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C–H bonds. To provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I using variable-temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe–S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe–S bond lengths can be understood in terms of variations in the hydrogen-bonding patterns within the ‘cys-pocket’ (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe–S bond, which enables greater electron donation from the axial thiolate ligand. This observation may in part explain P450's greater propensity for C–H bond activation. Cytochrome P450 (P450) and chloroperoxidase (CPO) are both thiolate-ligated haem proteins that form a ferryl radical species called compound I. P450-I is, however, significantly more reactive than CPO-I. Variable-temperature Mössbauer and X-ray absorption measurements have now shown that increased electron donation from the axial thiolate ligand in P450-I may explain its greater propensity for C–H bond activation.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.2306