Loading…
Hierarchy of fillings for the FQHE in monolayer graphene
In this paper, the commensurability conditions, which originated from the unique topology of two-dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a monolayer...
Saved in:
Published in: | Scientific reports 2015-09, Vol.5 (1), p.14287-14287, Article 14287 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the commensurability conditions, which originated from the unique topology of two-dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a monolayer graphene filling factor is pointed out. The calculations are undertaken for all spin-valley branches of two lowest Landau levels, since only they are currently experimentally accessible. The obtained filling factors are compared with the experimental data and a very good agreement is achieved. The work also introduces a concept of the single-loop fractional quantum Hall effect. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep14287 |